• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZOU De-gao, LIU Jing-mao, KONG Xian-jing, CHEN Kai, QU Yong-qian, NING Fan-wei, GONG Jin. Damage evolution mechanism and safety evaluation criterion of ultra-high rockfill dam system under strong earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1329-1340. DOI: 10.11779/CJGE202207011
Citation: ZOU De-gao, LIU Jing-mao, KONG Xian-jing, CHEN Kai, QU Yong-qian, NING Fan-wei, GONG Jin. Damage evolution mechanism and safety evaluation criterion of ultra-high rockfill dam system under strong earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1329-1340. DOI: 10.11779/CJGE202207011

Damage evolution mechanism and safety evaluation criterion of ultra-high rockfill dam system under strong earthquakes

More Information
  • Received Date: March 04, 2022
  • Available Online: September 22, 2022
  • Several ultra-high earth and rockfill dams up to 250 to 300 m in height are to be built in the intensive earthquake regions of West China. The strong outburst and high uncertainty of strong earthquakes pose a great threat to the safety of ultra-high earth and rockfill dams. The seismic safety evaluation of the ultra-high earth and rockfill dams is a multi-system, three-dimensional, nonlinear and discontinuous problem. However, the traditional dynamic analysis of high earth and rockfill dams is still within the range of weak nonlinearity, and the effects of multi-system interaction are mostly simplified and carried out in isolation, which is difficult to reveal the dynamic failure process and coupling effects of the ultra-high earth and rockfill dams under strong earthquakes. The project is oriented to the construction needs of 300 m-ultra-high earth and rockfill dams. Relying on the ultra-high earth and rockfill dams such as Lava and RM, the strong nonlinearity of the rockfill materials, dam-foundation-reservoir interactions, refined modelling methods, high-performance software and the assessment methods and criteria for the ultimate seismic capacity of the ultra-high earth and rockfill dams are studied. The results can provide advanced assessment methods and criteria for the aseismic design of ultra-high earth and rockfill dams.
  • [1]
    陈厚群. 汶川地震后对大坝抗震安全的思考[J]. 中国工程科学, 2009, 11(6): 44–53. doi: 10.3969/j.issn.1009-1742.2009.06.006

    CHEN Hou-qun. Consideration on seismic safety of dams in China after the Wenchuan Earthquake[J]. Engineering Sciences, 2009, 11(6): 44–53. (in Chinese) doi: 10.3969/j.issn.1009-1742.2009.06.006
    [2]
    陈生水, 霍家平, 章为民. "5.12"汶川地震对紫坪铺混凝土面板坝的影响及原因分析[J]. 岩土工程学报, 2008, 30(6): 795–801. doi: 10.3321/j.issn:1000-4548.2008.06.003

    CHEN Sheng-shui, HUO Jia-ping, ZHANG Wei-min. Analysis of effects of "5.12" Wenchuan earthquake on zipingpu concrete face rock-fill dam[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 795–801. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.06.003
    [3]
    ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49: 111–122. doi: 10.1016/j.compgeo.2012.10.010
    [4]
    孔宪京, 邹德高. 紫坪铺面板堆石坝震害分析与数值模拟[M]. 北京: 科学出版社, 2014.

    KONG Xian-jing, ZOU De-gao. The Seismic Damage Analysis and Numerical Simulation of Zi Pingpu CFRD[M]. Beijing: Science Press, 2014. (in Chinese)
    [5]
    孔宪京. 混凝土面板堆石坝抗震性能[M]. 北京: 科学出版社, 2015.

    KONG Xian-jing. Seismic Performance of Concrete-Faced Rockfill Dam[M]. Beijing: Science Press, 2015. (in Chinese)
    [6]
    孔宪京, 邹德高. 高土石坝地震灾变模拟与工程应用[M]. 北京: 科学出版社, 2016.

    KONG Xian-jing, ZOU De-gao. The Seismic Disaster Simulation and Engineering Application of High Rockfill Dams[M]. Beijing: Science Press, 2016. (in Chinese)
    [7]
    水电工程水工建筑物抗震设计规范: NB 35047—2015[S]. 2015.

    Code for Seismic Design of Hydraulic Structures of Hydropower Project: NB 35047—2015[S]. 2015. (in Chinese)
    [8]
    ZOU D G, LIU X Y, LIU J M, et al. A torsional vibration device for shear wave velocity measurement of coarse grained soils[J]. Measurement, 2019, 148: 106972. doi: 10.1016/j.measurement.2019.106972
    [9]
    LIU X Y, ZOU D G, LIU J M, et al. Experimental study to evaluate the effect of particle size on the small strain shear modulus of coarse-grained soils[J]. Measurement, 2020, 163: 107954. doi: 10.1016/j.measurement.2020.107954
    [10]
    LIU X Y, ZOU D G, LIU J M, et al. A gradation-dependent particle shape factor for characterizing small-strain shear modulus of sand-gravel mixtures[J]. Transportation Geotechnics, 2021, 28: 100548. doi: 10.1016/j.trgeo.2021.100548
    [11]
    LIU X Y, ZOU D G, LIU J M, et al. Predicting the small strain shear modulus of coarse-grained soils[J]. Soil Dynamics and Earthquake Engineering, 2021, 141: 106468. doi: 10.1016/j.soildyn.2020.106468
    [12]
    孔宪京, 刘京茂, 邹德高. 堆石料尺寸效应研究面临的问题及多尺度三轴试验平台[J]. 岩土工程学报, 2016, 38(11): 1941–1947. doi: 10.11779/CJGE201611002

    KONG Xian-jing, LIU Jing-mao, ZOU De-gao. Scale effect of rockfill and multiple-scale triaxial test platform[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 1941–1947. (in Chinese) doi: 10.11779/CJGE201611002
    [13]
    孔宪京, 宁凡伟, 刘京茂, 等. 基于超大型三轴仪的堆石料缩尺效应研究[J]. 岩土工程学报, 2019, 41(2): 255–261. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm

    KONG Xian-jing, NING Fan-wei, LIU Jing-mao, et al. Scale effect of rockfill materials using super-large triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(2): 255–261. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201902003.htm
    [14]
    宁凡伟. 基于超大型三轴仪的筑坝粗粒料缩尺效应研究[D]. 大连: 大连理工大学, 2020.

    NING Fan-wei. Research on the Scale Effect of Coarse Grained Materials Based on Super Large Triaxial Apparatus[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [15]
    宁凡伟, 孔宪京, 邹德高, 等. 筑坝材料缩尺效应及其对阿尔塔什面板坝变形及应力计算的影响[J]. 岩土工程学报, 2021, 43(2): 263–270. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102008.htm

    NING Fan-wei, KONG Xian-jing, ZOU De-gao, et al. Scale effect of rockfill materials and its influences on deformation and stress analysis of Aertashi CFRD[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(2): 263–270. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202102008.htm
    [16]
    LIU J M, ZOU D G, KONG X J. Three-dimensional scaled memory model for gravelly soils subject to cyclic loading[J]. Journal of Engineering Mechanics, 2018, 144(3): 04018001. doi: 10.1061/(ASCE)EM.1943-7889.0001367
    [17]
    LIU J M, ZOU D G, KONG X J. A two-mechanism soil-structure interface model for three-dimensional cyclic loading[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(15): 2042–2069. doi: 10.1002/nag.3118
    [18]
    QU Y Q, ZOU D G, KONG X J, et al. Seismic Damage performance of the steel fiber reinforced face slab in the concrete-faced rockfill dam[J]. Soil Dynamics and Earthquake Engineering, 2019, 119: 320–330. doi: 10.1016/j.soildyn.2019.01.018
    [19]
    QU Y Q, ZOU D G, CHEN K, et al. Three-dimensional refined analysis of seismic cracking and anti-seismic measures performance of concrete face slab in CFRDs[J]. Computers and Geotechnics, 2021, 139: 104376. doi: 10.1016/j.compgeo.2021.104376
    [20]
    QU Y Q, ZOU D G, KONG X J, et al. Seismic cracking evolution for anti-seepage face slabs in concrete faced rockfill dams based on cohesive zone model in explicit SBFEM-FEM frame[J]. Soil Dynamics and Earthquake Engineering, 2020, 133: 106106. doi: 10.1016/j.soildyn.2020.106106
    [21]
    余翔, 孔宪京, 邹德高, 等. 覆盖层上土石坝非线性动力响应分析的地震波动输入方法[J]. 岩土力学, 2018, 39(5): 1858–1866, 1876. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805039.htm

    YU Xiang, KONG Xian-jing, ZOU De-gao, et al. Seismic wave input method for nonlinear dynamic analysis of earth dam built on overburden[J]. Rock and Soil Mechanics, 2018, 39(5): 1858–1866, 1876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201805039.htm
    [22]
    余翔, 孔宪京, 邹德高, 等. 土石坝–覆盖层–基岩体系动力相互作用研究[J]. 水利学报, 2018, 49(11): 1378–1385, 1395. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201811007.htm

    YU Xiang, KONG Xian-jing, ZOU De-gao, et al. Study on the dynamic interaction of earth dam-overburden-bedrock system[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1378–1385, 1395. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201811007.htm
    [23]
    孔宪京, 周晨光, 邹德高, 等. 高土石坝-地基动力相互作用的影响研究[J]. 水利学报, 2019, 50(12): 1417–1432. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912001.htm

    KONG Xian-jing, ZHOU Chen-guang, ZOU De-gao, et al. Influence of the dynamic interaction between high rockfill dam and foundation[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1417–1432. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912001.htm
    [24]
    XU H, ZOU D G, KONG X J, et al. Error study of Westergaard's approximation in seismic analysis of high concrete-faced rockfill dams based on SBFEM[J]. Soil Dynamics and Earthquake Engineering, 2017, 94: 88–91. doi: 10.1016/j.soildyn.2017.01.006
    [25]
    许贺, 邹德高, 孔宪京, 等. 基于SBFEM的面板坝与可压缩库水动力耦合弹塑性分析方法[J]. 水利学报, 2018, 49(11): 1369–1377. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201811006.htm

    XU He, ZOU De-gao, KONG Xian-jing, et al. Dynamic coupling elasto-plastic analysis method for CFRD and compressible reservoir water based on SBFEM[J]. Journal of Hydraulic Engineering, 2018, 49(11): 1369–1377. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201811006.htm
    [26]
    XU H, ZOU D G, KONG X J, et al. A nonlinear analysis of dynamic interactions of CFRD-compressible reservoir system based on FEM-SBFEM[J]. Soil Dynamics and Earthquake Engineering, 2018, 112: 24–34. doi: 10.1016/j.soildyn.2018.04.057
    [27]
    许贺, 邹德高, 孔宪京. 基于FEM-SBFEM的坝-库水动力耦合简化分析方法[J]. 工程力学, 2019, 36(12): 37–43. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201912005.htm

    XU He, ZOU De-gao, KONG Xian-jing. A simplified dam-reservoir dynamic coupling analysis method based on fem-sbfem[J]. Engineering Mechanics, 2019, 36(12): 37–43. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201912005.htm
    [28]
    许贺. 高面板堆石坝与库水系统动力流固耦合分析方法研究[D]. 大连: 大连理工大学, 2019.

    XU He. Study on Dynamic Coupling Analysis Method of High CFRD and Reservior System[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [29]
    CHEN K, ZOU D G, KONG X J, et al. A novel nonlinear solution for the polygon scaled boundary finite element method and its application to geotechnical structures[J]. Computers and Geotechnics, 2017, 82: 201–210. doi: 10.1016/j.compgeo.2016.09.013
    [30]
    CHEN K, ZOU D G, KONG X J. A nonlinear approach for the three-dimensional polyhedron scaled boundary finite element method and its verification using Koyna gravity dam[J]. Soil Dynamics and Earthquake Engineering, 2017, 96: 1–12. doi: 10.1016/j.soildyn.2017.01.028
    [31]
    陈楷, 邹德高, 孔宪京, 等. 多边形比例边界有限单元非线性化方法及应用[J]. 浙江大学学报(工学版), 2017, 51(10): 1996–2004, 2018. doi: 10.3785/j.issn.1008-973X.2017.10.014

    CHEN Kai, ZOU De-gao, KONG Xian-jing, et al. Novel nonlinear polygon scaled boundary finite element method and its application[J]. Journal of Zhejiang University (Engineering Science), 2017, 51(10): 1996–2004, 2018. (in Chinese) doi: 10.3785/j.issn.1008-973X.2017.10.014
    [32]
    ZOU D G, CHEN K, KONG X J, et al. An enhanced octree polyhedral scaled boundary finite element method and its applications in structure analysis[J]. Engineering Analysis With Boundary Elements, 2017, 84: 87–107. doi: 10.1016/j.enganabound.2017.07.007
    [33]
    CHEN K, ZOU D G, KONG X J, et al. An efficient nonlinear octree SBFEM and its application to complicated geotechnical structures[J]. Computers and Geotechnics, 2018, 96: 226–245. doi: 10.1016/j.compgeo.2017.10.021
    [34]
    CHEN K, ZOU D G, KONG X J, et al. Global concurrent cross-scale nonlinear analysis approach of complex CFRD systems considering dynamic impervious panel-rockfill material-foundation interactions[J]. Soil Dynamics and Earthquake Engineering, 2018, 114: 51–68. doi: 10.1016/j.soildyn.2018.06.027
    [35]
    孔宪京, 陈楷, 邹德高, 等. 一种高效的FE-PSBFE耦合方法及在岩土工程弹塑性分析中的应用[J]. 工程力学, 2018, 35(6): 6–14. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806004.htm

    KONG Xian-jing, CHEN Kai, ZOU De-gao, et al. An efficient fe-psbfe coupled method and its application to the elasto-plastic analysis of geotechnical engineering structures[J]. Engineering Mechanics, 2018, 35(6): 6–14. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201806004.htm
    [36]
    陈楷. 基于比例边界有限元的岩土工程精细化分析方法及应用[D]. 大连: 大连理工大学, 2019.

    CHEN Kai. Research on Technique and Application in Refined Analysis of Complicated Geotechnical Engineering Structures Based on Scaled Boundary Finite Element Method[D]. Dalian: Dalian University of Technology, 2019. (in Chinese)
    [37]
    邹德高, 陈楷, 刘锁, 等. 非线性比例边界有限元在面板坝分析中的应用[J]. 土木与环境工程学报(中英文), 2019, 41(3): 11–18. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201903002.htm

    ZOU De-gao, CHEN Kai, LIU Suo, et al. Application of nonlinear scaled boundary polygon element method in analysis of concrete face rockfill dam[J]. Journal of Civil and Environmental Engineering, 2019, 41(3): 11–18. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201903002.htm
    [38]
    邹德高, 陈楷, 余翔, 等. 基于跨尺度精细方法的面板坝面板损伤演化尺寸效应分析[J]. 土木与环境工程学报(中英文), 2019, 41(6): 36–42. https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201906005.htm

    ZOU De-gao, CHEN Kai, YU Xiang, et al. Size effect analysis of face slab damage evolution for high concrete face dam under earthquakes based on cross-scale fine method[J]. Journal of Civil and Environmental Engineering, 2019, 41(6): 36–42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JIAN201906005.htm
    [39]
    LIU G R, GU Y T. A point interpolation method for two-dimensional solids[J]. International Journal for Numerical Methods in Engineering, 2001, 50(4): 937–951. doi: 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X
    [40]
    LIU G R, GU Y T. Comparisons of two meshfree local point interpolation methods for structural analyses[J]. Computational Mechanics, 2002, 29(2): 107–121. doi: 10.1007/s00466-002-0320-4
    [41]
    邹德高, 龚瑾, 孔宪京, 等. 基于无网格界面模拟方法的面板坝防渗体跨尺度分析[J]. 水利学报, 2019, 50(12): 1446–1453, 1466. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912003.htm

    ZOU De-gao, GONG Jin, KONG Xian-jing, et al. The cross-scale analysis of concrete-face rock-fill dam anti-seepage structure based on the simulation of meshfree interface[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1446–1453, 1466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912003.htm
    [42]
    GONG J, ZOU D G, KONG X J, et al. An extended meshless method for 3D interface simulating soil-structure interaction with flexibly distributed nodes[J]. Soil Dynamics and Earthquake Engineering, 2019, 125: 105688. doi: 10.1016/j.soildyn.2019.05.027
    [43]
    GONG J, ZOU D G, KONG X J, et al. A non-matching nodes interface model with radial interpolation function for simulating 2D soil–structure interface behaviors[J]. International Journal of Computational Methods, 2021, 18(1): 2050023. doi: 10.1142/S0219876220500231
    [44]
    GONG J, ZOU D G, KONG X J, et al. A coupled meshless-SBFEM-FEM approach in simulating soil-structure interaction with cross-scale model[J]. Soil Dynamics and Earthquake Engineering, 2020, 136: 106214. doi: 10.1016/j.soildyn.2020.106214
    [45]
    GONG J, ZOU D G, KONG X J, et al. An approach for simulating the interaction between soil and discontinuous structure with mixed interpolation interface[J]. Engineering Structures, 2021, 237: 112035.
    [46]
    屈永倩. 面板堆石坝地震损伤演化-破坏分析方法与应用研究[D]. 大连: 大连理工大学, 2020.

    QU Yong-qian. Research on Method and Application of Seismic Damage Evolution-Failure on Concrete Faced Rockfill Dam[D]. Dalian: Dalian University of Technology, 2020. (in Chinese)
    [47]
    HILLERBORG A, MODÉER M, PETERSSON P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements[J]. Cement and Concrete Research, 1976, 6(6): 773–781.
    [48]
    LEE J, FENVES G L. Plastic-damage model for cyclic loading of concrete structures[J]. Journal of Engineering Mechanics, 1998, 124(8): 892–900.
    [49]
    邹德高, 孔宪京, 刘京茂, 等. 高土石坝极限抗震能力评价量化指标研究[J]. 中国科学: 技术科学, 2022.

    ZOU De-gao, KONG Xian-jing, LIU Jing-mao, et al. Criteria for ultimate aseismic capacity of high rockfill dam[J]. Science China Technological Science, 2022. (in Chinese)
    [50]
    GONG J, ZOU D G, KONG X J, et al. The simulation of high compressive stress and extrusion phenomenon for concrete face slabs in CFRDs under strong seismic loads[J]. Soil Dynamics and Earthquake Engineering, 2021, 147: 106792.
    [51]
    孔宪京, 邹德高, 陈楷. 比例边界有限元在岩土工程中的应用[M]. 北京: 科学出版社, 2022.

    KONG Xian-jing, ZOU De-gao, CHEN Kai. Research on Technique and Application in Refined Analysis of Complicated Geotechnical Engineering Structures Based on Scaled Boundary Finite Element Method[M]. Beijing: Science Press, 2022. (in Chinese)
  • Cited by

    Periodical cited type(4)

    1. 向金宝,武娥芬. 龙潭河水库工程土石坝静动力分析与应力变形研究. 陕西水利. 2024(01): 22-24 .
    2. 于彦彦,丁海平,芮志良. 二维层状盆地地震动附加放大特征研究:SV波入射. 振动与冲击. 2024(04): 166-178 .
    3. 曾强. 某水库大坝安全加固方案研究. 水利技术监督. 2022(12): 129-131 .
    4. 邹德高,彭俊,李俊超,陈涛,刘京茂,王建全,陈楷. 沥青混凝土面板堆石坝强震变形模式和极限抗震能力分析. 水电与抽水蓄能. 2022(06): 15-20 .

    Other cited types(4)

Catalog

    Article views (259) PDF downloads (118) Cited by(8)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return