Citation: | WANG Xiao-gang, CHEN Yi-feng, LU Bo, WANG Yu-jie, XU Wei-ya, YANG Qiang, ZHANG Xi-wei. Control technology and interaction mechanism between important structures of multi-purpose projects and geological environment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(7): 1220-1238. DOI: 10.11779/CJGE202207004 |
[1] |
FENG X T, ZHAO J, ZHANG X W, et al. A novel true triaxial apparatus for studying the time-dependent behaviour of hard rocks under high stress[J]. Rock Mechanics and Rock Engineering, 2018, 51(9): 2653–2667. doi: 10.1007/s00603-018-1516-z
|
[2] |
WU A Q, FAN L, FU X, et al. Design and application of hydro-mechanical coupling test system for simulating rock masses in high dam reservoir operations[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 140: 104638. doi: 10.1016/j.ijrmms.2021.104638
|
[3] |
赵志宏. 岩石裂隙水–岩作用机制与力学行为研究[J]. 岩石力学与工程学报, 2021, 40(增刊2): 3063–3073. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2007.htm
ZHAO Zhi-hong. Study on water-rock interaction mechanisms and mechanical behaviors of single rock fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(S2): 3063–3073. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2021S2007.htm
|
[4] |
DOU Z H, GAO T Y, ZHAO Z H, et al. Effect of immersion duration on shear behavior of granite fractures[J]. Rock Mechanics and Rock Engineering, 2021, 54(9): 4809–4823. doi: 10.1007/s00603-021-02534-8
|
[5] |
DOU Z H, GAO T Y, ZHAO Z H, et al. The role of water lubrication in critical state fault slip[J]. Engineering Geology, 2020, 271: 105606. doi: 10.1016/j.enggeo.2020.105606
|
[6] |
SHANG D L, ZHAO Z H, DOU Z H, et al. Shear behaviors of granite fractures immersed in chemical solutions[J]. Engineering Geology, 2020, 279: 105869. doi: 10.1016/j.enggeo.2020.105869
|
[7] |
FAN L, YU M W, WU A Q, et al. Study on the deformation characteristics of fractured basalt under coupling of three-dimensional stress and water pressure cycling[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(2): 022039. doi: 10.1088/1755-1315/861/2/022039
|
[8] |
FAN L, YU M W, WU A Q, et al. Developing an in situ, hydromechanical coupling, true triaxial rock compression tester and investigating the deformation patterns of reservoir bank slopes[J]. Quarterly Journal of Engineering Geology and Hydrogeology, 2021: qjegh2021-43.
|
[9] |
WANG Y J, SUN X S, REN A W. Investigations of rock anchor corrosion and its influence factors by exhumations in four typical field sites[J]. Engineering Failure Analysis, 2019, 101: 357–382. doi: 10.1016/j.engfailanal.2019.03.022
|
[10] |
SUN X S, WANG Y J, YIN T, et al. New system for investigating the corrosion of existing rock anchors[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072117. doi: 10.1088/1755-1315/861/7/072117
|
[11] |
王玉杰, 尹韬, 孙兴松, 等. 丰满老坝加固预应力锚索服役近30年后性能评价研究[J]. 岩石力学与工程学报, 2022, 41(1): 62–69. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201005.htm
WANG Yu-jie, YIN Tao, SUN Xing-song, et al. Performance evaluation of prestressed anchors embedded in old Fengman Dam after nearly 30 years service[J]. Chinese Journal of Rock Mechanics and Engineering, 2022, 41(1): 62–69. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202201005.htm
|
[12] |
YIN T, SUN X S, WANG Y J, et al. Corrosion investigation of rock anchors served over 10 years in underground powerhouse of a hydropower station[J]. Advances in Materials Science and Engineering, 2022: 4905010.
|
[13] |
WANG Y J, YIN T, SUN X S, et al. Review of corrosion test methods of prestressed anchor[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(2): 022060. doi: 10.1088/1755-1315/861/2/022060
|
[14] |
YIN T, SUN X S, WANG Y J, et al. Corrosion characteristics of anchor cables in electrolytic corrosion test and the applicability of the test method in study of anchor cable corrosion[J]. Advances in Civil Engineering, 2021, 2021: 6695288.
|
[15] |
孙彦鹏. 楔形压胀式内锚头作用机理及应用研究[D]. 邯郸: 河北工程大学, 2020.
SUN Yan-peng. Study on the Action Mechanism and Application of Wedge-Shaped Expansion Type Internal Anchor Head[D]. Handan: Hebei University of Engineering, 2020. (in Chinese)
|
[16] |
孙彦鹏, 凌永玉, 林兴超, 等. 新型预应力锚索内部监测结构试验研究[J]. 岩土工程学报, 2020, 42(增刊2): 226–230. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2040.htm
SUN Yan-peng, LING Yong-yu, LIN Xing-chao, et al. Experimental study on internal monitoring structure of a new prestressed anchor cable[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(S2): 226–230. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2020S2040.htm
|
[17] |
CHEN Y F, LING X M, LIU M M, et al. Statistical distribution of hydraulic conductivity of rocks in deep-incised valleys, Southwest China[J]. Journal of Hydrology, 2018, 566: 216–226. doi: 10.1016/j.jhydrol.2018.09.016
|
[18] |
陈益峰. 水利工程渗流分析理论与实践[M]. 北京: 科学出版社, 2022.
CHEN Yi-feng. Seepage Analysis in Hydraulic Engineering: Theory and Practice[M]. Beijing: Science Press, 2022 (in Chinese)
|
[19] |
CHEN Y F, ZENG J, SHI H T, et al. Variation in hydraulic conductivity of fractured rocks at a dam foundation during operation[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2021, 13(2): 351–367. doi: 10.1016/j.jrmge.2020.09.008
|
[20] |
JIA C J, XU W Y, WANG S S, et al. Experimental analysis and modeling of the mechanical behavior of breccia lava in the dam foundation of the Baihetan Hydropower Project[J]. Bulletin of Engineering Geology and the Environment, 2019, 78(4): 2681–2695. doi: 10.1007/s10064-018-1228-3
|
[21] |
WANG H L, XU W Y, JIA C J, et al. Experimental research on permeability evolution with microcrack development in sandstone under different fluid pressures[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2016, 142(6): 04016014. doi: 10.1061/(ASCE)GT.1943-5606.0001462
|
[22] |
MENG Q X, WANG H L, XU W Y, et al. Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modeling[J]. Computers and Geotechnics, 2019, 115: 103164. doi: 10.1016/j.compgeo.2019.103164
|
[23] |
SHI H J, XU W Y, YANG L L, et al. Investigation of influencing factors for valley deformation of high arch dam using machine learning[J]. European Journal of Environmental and Civil Engineering, 2020: 1–12.
|
[24] |
SUN M C, XU W Y, WANG H L, et al. A novel hybrid intelligent prediction model for valley deformation: a case study in Xiluodu Reservoir region, China[J]. Computers, Materials & Continua, 2020, 66(1): 1057–1074.
|
[25] |
LI B, XU J R, XU W Y, et al. Mechanism of valley narrowing deformation during reservoir filling of a high arch dam[J]. European Journal of Environmental and Civil Engineering, 2020: 1–11.
|
[26] |
WANG X W, XU J R, XUE L J, et al. Study on deformation of abutment and the influence on high arch dam during impoundment[J]. IOP Conference Series: Earth and Environmental Science, 2021, 861(7): 072068. doi: 10.1088/1755-1315/861/7/072068
|
[27] |
钟大宁. 高拱坝谷幅变形机制及谷幅变形对大坝的影响研究[D]. 北京: 清华大学, 2019.
ZHONG Da-ning. Study on the Mechanism of Valley Width Deformation and Its Effects on the Arch Dam[D]. Beijing: Tsinghua University, 2019 (in Chinese)
|
[28] |
杨强, 王守光, 李超毅, 等. 岩体结构变形破坏的内在驱动力–不平衡力[J]. 工程地质学报, 2020, 28(2): 202–210. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm
YANG Qiang, WANG Shou-guang, LI Chao-yi, et al. Internal driving force of deformation and failure of rock mass structure-unbalanced force[J]. Journal of Engineering Geology, 2020, 28(2): 202–210. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202002002.htm
|
[29] |
WANG S G., LIU Y R., ZHOU H W., et al. Experimental study on failure process of arch dam based on acoustic emission technique[J]. Engineering Failure Analysis, 2019, 97: 128–144. doi: 10.1016/j.engfailanal.2019.01.013
|
[30] |
TAO Z F, LIU Y R, YANG Q, et al. Study on the nonlinear deformation and failure mechanism of a high arch dam and foundation based on geomechanical model test[J]. Engineering Structures, 2020, 207: 110287. doi: 10.1016/j.engstruct.2020.110287
|
[31] |
WANG X G., LIU L P., FU R Z., et al. Newly developed pressure adaptable concrete lining for high pressure hydraulic tunnels[J]. Tunnelling and Underground Space Technology, 2020, 105: 103570. doi: 10.1016/j.tust.2020.103570
|
[32] |
刘立鹏, 汪小刚, 段庆伟, 等. 高压富水地层水工隧洞衬砌外水压力确定与应对措施[J/OL]. 岩土工程学报: 1-9[2022-03-05]. http://kns.cnki.net/kcms/detail/32.1124.Tu.20211228.1528.011.html, 2022.
LIU Li-peng, WANG Xiao-gang, DUAN Qing-wei, et al. Methods to cope with external water pressure of hydraulic tunnel lining in high-pressure groundwater-rich stratum[J/OL]. Chinese Journal of Geotechnical Engineering: 1-9[2022-03-05]. http://kns.cnki.net/kcms/detail/32.1124.Tu.20211228.1528.011.html, 2022. (in Chinese)
|
[1] | WEI Ran, ZHANG Liya, XIAO Zhirui, YAN Jun, WANG Bo. Deformation and control mechanism of MICP-treated expansive soil[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 92-96. DOI: 10.11779/CJGE2023S10050 |
[2] | LIU Ning, GAO Yaohui, CHEN Pingzhi. Relaxation time-space effects of columnar jointed basalt and their control technologies[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(10): 2052-2061. DOI: 10.11779/CJGE20220845 |
[3] | XIE Yong-li, FENG Zhong-ju, LI Shao-jie, DONG Yun-xiu, HAO Yu-meng, ZHANG Meng-ran, HU Hai-bo. Longitudinal load adjustment technology for high embankment culverts based on settlement control[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(10): 1790-1799. DOI: 10.11779/CJGE201910002 |
[4] | YUAN Jing, CHEN Jin-you, LIU Xing-wang, HE Xiao-long. Control technology of interface retaining structures of multiple adjacent deep excavations in silty sand[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 99-105. DOI: 10.11779/CJGE2014S2017 |
[5] | ZHU He-hua, DING Wen-qi, QIAO Ya-fei, XIE Dong-wu. Micro-disturbed construction control technology system for shield driven tunnels and its application[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 1983-1993. DOI: 10.11779/CJGE201411003 |
[6] | YU Wei-jian, WANG Wei-jun, WEN Guo-hua, ZHANG Nong, WU Hai, ZHANG Yong-qing. Deformation mechanism and control technology of coal roadway under deep well and compound roof[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1501-1508. |
[7] | CHENG Xiao-wei, WANG Zhen, ZHANG Xiao-bing. Causes of inclination of a high-rise residential building and relevant inclination-rectifying and reinforcement technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 756-761. |
[8] | LIU Shu-ya, OUYANG-Rong. Deformation of Shenzhen subway aroused by deep excavations andits risk control technology[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 638-643. |
[9] | NG C W W, CHEN Rui. Advanced suction control techniques for testing unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(2): 123-128. |
[10] | LIU Guangming, YANG Jingsong, LI Dongshun. Based on electromagnetic sensing technology of hidden dyke safety problems and its application[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 196-200. |