• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
GENG Zhe, YUAN Dajun, JIN Dalong, SHU Jicheng, LOU Rui. Loose earth pressure of tunnels considering progressive failure of loosen zone[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1754-1762. DOI: 10.11779/CJGE20220684
Citation: GENG Zhe, YUAN Dajun, JIN Dalong, SHU Jicheng, LOU Rui. Loose earth pressure of tunnels considering progressive failure of loosen zone[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1754-1762. DOI: 10.11779/CJGE20220684

Loose earth pressure of tunnels considering progressive failure of loosen zone

More Information
  • Received Date: May 26, 2022
  • Available Online: February 23, 2023
  • The loose earth pressure of shallow shield tunnel is closely related to the soil arch effect and the progressive failure of the loosen zone. Based on the ellipsoidal theory, the elliptic loosen zone model is established, and the relationship between the ground loss and the loosen zone height is proposed. The process of progressive failure and the limit state are defined. Considering the soil cohesion and the ellipse shape of the loosen zone, the lateral earth pressure coefficient under arbitrary dip angle of slip surface is obtained by means of the large principal stress trace method. The formula for calculating the loose earth pressure at tunnel top is derived and verified. The parameter analysis is carried out for the limit state and non-limit state, and the research results show that: (1) The loose soil pressure at tunnel top decreases with the increase of the internal friction angle and cohesion. (2) With the increase of the loosen zone height, the loose earth pressure at tunnel top decreases sharply first, then increases gradually, and finally tends to be stable.
  • [1]
    陈湘生, 徐志豪, 包小华, 等. 中国隧道建设面临的若干挑战与技术突破[J]. 中国公路学报, 2020, 33(12): 1-14. doi: 10.3969/j.issn.1001-7372.2020.12.001

    CHEN Xiangsheng, XU Zhihao, BAO Xiaohua, et al. Challenges and technological breakthroughs in tunnel construction in China[J]. China Journal of Highway and Transport, 2020, 33(12): 1-14. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.001
    [2]
    KOYAMA Y, KONISHI S, OKANO N. In-situ measurement and consideration on shield tunnel[J]. Quarterly Report of RTRI, 2001, 42(3): 125-129. doi: 10.2219/rtriqr.42.125
    [3]
    KOYAMA Y. Present status and technology of shield tunneling method in Japan[J]. Tunnelling and Underground Space Technology, 2003, 18(2/3): 145-159.
    [4]
    袁大军, 吴俊, 沈翔, 等. 超高水压越江海长大盾构隧道工程安全[J]. 中国公路学报, 2020, 33(12): 26-45. doi: 10.3969/j.issn.1001-7372.2020.12.003

    YUAN Dajun, WU Jun, SHEN Xiang, et al. Engineering safety of cross-river or cross-sea long-distance large-diameter shield tunneling under superhigh water pressure[J]. China Journal of Highway and Transport, 2020, 33(12): 26-45. (in Chinese) doi: 10.3969/j.issn.1001-7372.2020.12.003
    [5]
    TERZAGHI K. Stress distribution in dry and in saturated sand above a yielding trap-door[C]// Proceedings of First International Conference on Soil Mechanics and Foundation Engineering. Cambridge, 1936.
    [6]
    TERZAGHI K, PECK R, MESRI G. Soil Mechanics in Engineering Practice[M]. New York: Hohn Wiley and Sons, Inc, 1948.
    [7]
    HANDY R L. The arch in soil arching[J]. Journal of Geotechnical Engineering, 1985, 111(3): 302-318. doi: 10.1061/(ASCE)0733-9410(1985)111:3(302)
    [8]
    HARROP-WILLIAMS K. Arch in soil arching[J]. Journal of Geotechnical Engineering, 1989, 115(3): 415-419. doi: 10.1061/(ASCE)0733-9410(1989)115:3(415)
    [9]
    陈若曦, 朱斌, 陈云敏, 等. 基于主应力轴旋转理论的修正Terzaghi松动土压力[J]. 岩土力学, 2010, 31(5): 1402-1406. doi: 10.3969/j.issn.1000-7598.2010.05.009

    CHEN Ruoxi, ZHU Bin, CHEN Yunmin, et al. Modified Terzaghi loozening earth pressure based on theory of main stress axes rotation[J]. Rock and Soil Mechanics, 2010, 31(5): 1402-1406. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.05.009
    [10]
    陈国舟, 周国庆. 考虑土拱效应的滑移面间竖向应力研究[J]. 中国矿业大学学报, 2014, 43(3): 374-379. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm

    CHEN Guozhou, ZHOU Guoqing. Study of vertical stress between slip planes considering soil arching effect[J]. Journal of China University of Mining & Technology, 2014, 43(3): 374-379. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201403002.htm
    [11]
    陈国舟, 周国庆. 考虑土拱效应的倾斜滑移面间竖向应力研究[J]. 岩土力学, 2013, 34(9): 2643-2648. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407050.htm

    CHEN Guozhou, ZHOU Guoqing. Study of vertical stress within inclined slip surfaces considering soil arching[J]. Rock and Soil Mechanics, 2013, 34(9): 2643-2648. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201407050.htm
    [12]
    徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm

    XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm
    [13]
    宫全美, 张润来, 周顺华, 等. 基于颗粒椭球体理论的隧道松动土压力计算方法[J]. 岩土工程学报, 2017, 39(1): 99-105. doi: 10.11779/CJGE201701008

    GONG Quanmei, ZHANG Runlai, ZHOU Shunhua, et al. Method for calculating loosening earth pressure around tunnels based on ellipsoid theory of particle flows[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(1): 99-105. (in Chinese) doi: 10.11779/CJGE201701008
    [14]
    汪大海, 贺少辉, 刘夏冰, 等. 基于主应力旋转特征的浅埋隧道上覆土压力计算及不完全拱效应分析[J]. 岩石力学与工程学报, 2019, 38(6): 1284-1296. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906019.htm

    WANG Dahai, HE Shaohui, LIU Xiabing, et al. A modified method for determining the overburden pressure above shallow tunnels considering the distribution of the principal stress rotation and the partially mobilized arching effect[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(6): 1284-1296. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201906019.htm
    [15]
    汪大海, 贺少辉, 刘夏冰, 等. 地层渐进成拱对浅埋隧道上覆土压力影响研究[J]. 岩土力学, 2019, 40(6): 2311-2322. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906031.htm

    WANG Dahai, HE Shaohui, LIU Xiabing, et al. Study on the influence of gradual arching of strata on the earth pressure on shallow tunnel[J]. Rock and Soil Mechanics, 2019, 40(6): 2311-2322. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201906031.htm
    [16]
    IGLESIA G R. Trapdoor Experiments on the Centrifuge, A Study of Arching in Geomaterials and Similitude in Geotechnical Models[D]. Boston: Dept of Civil Engineering, MIT, 1991.
    [17]
    IGLESIA G R, EINSTEIN H H, WHITMAN R V. Validation of centrifuge model scaling for soil systems via trapdoor tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2011, 137(11): 1075-1089.
    [18]
    IGLESIA G R, EINSTEIN H H, WHITMAN R V. Investigation of soil arching with centrifuge tests[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(2): 04013005.
    [19]
    JACOBSZ S. Trapdoor Experiments Studying Cavity Propagation[M]// Proceedings of the First Southern African Geotechnical Conference. Los Angeles: CRC Press, 2016: 159-165.
    [20]
    LEE C, CHEN H, LIN W, et al. Evolution of Arching Effect during Tunneling in Sandy Soil[M]// Physical Modelling in Geotechnics. New York: Taylor & Francis, 2006.
    [21]
    SHAHIN H M, NAKAI T, ZHANG F, et al. Model tests and numerical simulations on shallow circular tunneling-Ground movement and earth pressure due to circular tunneling[C]// Proc. of the 6th International Symposium on Geotechnical Aspects of Underground Construction in Soft Ground, Shanghai, China. 2008: 709-715.
    [22]
    JANELID I, KVAPIL R. Sublevel caving[C]//International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. Pergamon, 1966, 3(2): 129-132.
    [23]
    WU J, LIAO S M, LIU M B. An analytical solution for the arching effect induced by ground loss of tunneling in sand[J]. Tunnelling and Underground Space Technology, 2019, 83: 175-186.
  • Related Articles

    [1]Review on water disaster prevention of tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240972
    [2]A discrete element simulation method of clayey grain-cementing type methane hydrate bearing sediment accounting for pore size and physicochemical properties[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240845
    [3]DENG Shu-xin, WANG Ming-yang, LI Jie, ZHANG Guo-kai, WANG Zhen. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. DOI: 10.11779/CJGE202012007
    [4]WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. DOI: 10.11779/CJGE202001001
    [5]WU Zhi-jian, CHEN Yu-jin, WANG Qian, ZHAO Duo-yin, ZHANG Dan. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165-168. DOI: 10.11779/CJGE2019S2042
    [6]DU Xiu-li, LI Yang, XU Cheng-shun, LU De-chun, XU Zi-gang, JIN Liu. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. DOI: 10.11779/CJGE201802002
    [7]WANG Kai-xing, PAN Yi-shan, DOU Lin-ming. Energy transfer in block-rock mass during propagation of pendulum-type waves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2309-2314. DOI: 10.11779/CJGE201612021
    [8]ZHANG Xu-hui, WU Xin, YU Jian-lin, HE Meng, GONG Xiao-nan. New slurry pressure type soil-nailing technology and its working mechanism[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 227-232. DOI: 10.11779/CJGE2014S2038
    [9]ZHOU Jian, DU Qiang, LI Ye-xun, ZHANG Jiao. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. DOI: 10.11779/CJGE201411006
    [10]LU Li, LI Liang, DENG Yu, HU Tian-shi, LI Xiao-xiao. Failure mechanism of mortar in front of bearing plate of compression type anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2110-2116.
  • Cited by

    Periodical cited type(2)

    1. 顾维,郭芳,郭一鹏. 基于灰色系统的深厚软基上部路堤沉降预测研究. 武汉理工大学学报(交通科学与工程版). 2024(01): 110-114 .
    2. 孙中秋,朱明,贾飞扬,徐益飞. 矩形明洞回填黄土对落石冲击响应的数值模拟研究. 现代隧道技术. 2024(06): 111-117+128 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return