• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZOU Degao, GONG Jin, KONG Xianjing, QU Yongqian, LIU Jingmao, CHEN Kai. Local large deformation between cut-off wall and core wall on deep overburden by meshless method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1773-1781. DOI: 10.11779/CJGE20220603
Citation: ZOU Degao, GONG Jin, KONG Xianjing, QU Yongqian, LIU Jingmao, CHEN Kai. Local large deformation between cut-off wall and core wall on deep overburden by meshless method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1773-1781. DOI: 10.11779/CJGE20220603

Local large deformation between cut-off wall and core wall on deep overburden by meshless method

More Information
  • Received Date: May 09, 2022
  • Available Online: March 05, 2023
  • As a significant type of dam on deep overburden, the earth core rockfill dam connects the concrete cut-off wall and soil core wall directly, and the "penetration" phenomenon with local large deformation may exist between cut-off wall and core wall due to the difference in material stiffness. Using an arbitrary Lagrangian-Euler (ALE) framework, an elastic-plastic meshless large deformation method is developed in this research. The meshless method has the benefit of flexible nodal distribution, and the ALE framework shows the advantage of accuracy and stability in large deformation analysis, thus avoiding the precision reduction or re-meshing procedure in the mesh-based large deformation method. The introduced approach is incorporated into the self-developed calculation platform GEODYNA and combined with the finite element method (FEM) and the scale boundary finite element method (SBFEM). Finally, the coupled meshless-FEM-SBFEM applied to an earth core rockfill dam on deep overburden, and combined with the generalized elasto-plastic model, the "penetration" phenomenon with local large deformation is simulated. The results indicate that the large deformation analysis can capture the stress distribution of the cut-off wall and the soil deformation near the joint zone more reasonably, the vertical stress of the cut-off wall calculated by the small deformation analysis is underestimated by about 4.1 MPa (13%), and a shear zone exists between the soil area at the top of the cut-off wall.
  • [1]
    金峰, 周虎, 李玲玉, 等. 堆石混凝土系列技术在西部水电工程中的应用[J]. 水电与抽水蓄能, 2021, 7(1): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202101005.htm

    JIN Feng, ZHOU Hu, LI Lingyu, et al. Application of innovative technologies based on rock-filled concrete in hydropower projects in western China[J]. Hydropower and Pumped Storage, 2021, 7(1): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DBGC202101005.htm
    [2]
    YU X, ZOU D G, KONG X J, YU L. Large-deformation finite element analysis of the interaction between concrete cut-off walls and high-plasticity clay in an earth core dam[J]. Engineering Computations, 2017, 34(4): 1126-1148. doi: 10.1108/EC-04-2016-0118
    [3]
    丁艳辉, 张其光, 张丙印. 高心墙堆石坝防渗墙应力变形特性有限元分析[J]. 水力发电学报, 2013, 32(3): 162-167. https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201303029.htm

    DING Yanhui, ZHANG Qiguang, ZHANG Bingyin. FEM analysis of stress-deformation characteristics of cut-off walls in high core rockfill dam[J]. Journal of Hydroelectric Engineering, 2013, 32(3): 162-167. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SFXB201303029.htm
    [4]
    沈振中, 田振宇, 徐力群, 等. 深覆盖层上土石坝心墙与防渗墙连接型式研究[J]. 岩土工程学报, 2017, 39(5): 939-945. doi: 10.11779/CJGE201705019

    SHEN Zhenzhong, TIAN Zhenyu, XU Liqun, et al. Reasonable connection type for cutoff wall and core wall of earth-rock dams on deep overburden layers[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(5): 939-945. (in Chinese) doi: 10.11779/CJGE201705019
    [5]
    温立峰, 李炎隆, 柴军瑞. 坝基混凝土防渗墙力学性状的统计分析[J]. 水利学报, 2021, 52(2): 241-254. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202102012.htm

    WEN Lifeng, LI Yanlong, CHAI Junrui. Statistical analysis of mechanical properties of dam foundation concrete cutoff wall[J]. Journal of Hydraulic Engineering, 2021, 52(2): 241-254. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB202102012.htm
    [6]
    WANG D, BIENEN B, NAZEM M, et al. Large deformation finite element analyses in geotechnical engineering[J]. Computers & Geotechnics, 2015, 65(S): 104-114.
    [7]
    AUGARDE C E, LEE S J, LOUKIDIS D. Numerical modelling of large deformation problems in geotechnical engineering: a state-of-the-art review[J]. Soils and Foundations, 2021, 61(6): 1718-1735.
    [8]
    王栋, 年廷凯, 陈煜淼. 边坡稳定有限元分析中的三个问题[J]. 岩土力学, 2007, 28(11): 2309-2313, 2318. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201007045.htm

    WANG Dong, NIAN Tingkai, CHEN Yumiao. Three problems in slope stability analyses with finite element method[J]. Rock and Soil Mechanics, 2007, 28(11): 2309-2313, 2318. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201007045.htm
    [9]
    MILLER K, JOLDES G, LANCE D E, et al. Total Lagrangian explicit dynamics finite element algorithm for computing soft tissue deformation[J]. Communications in Numerical Methods in Engineering, 2007, 23(2): 121-134.
    [10]
    BATHE K J, RAMM E, WILSON E L. Finite element formulations for large deformation dynamic analysis[J]. International Journal for Numerical Methods in Engineering, 1975, 9(2): 353-386.
    [11]
    HU Y, RANDOLPH M F. A practical numerical approach for large deformation problems in soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1998, 22(5): 327-350.
    [12]
    BENSON D J. Computational methods in Lagrangian and eulerian hydrocodes[J]. Computer Methods in Applied Mechanics and Engineering, 1992, 99(2/3): 235-394.
    [13]
    LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013.
    [14]
    黄雨, 郝亮, 野々山人. SPH方法在岩土工程中的研究应用进展[J]. 岩土工程学报, 2008, 30(2): 256-262. http://www.cgejournal.com/cn/article/id/12763

    HUANG Yu, HAO Liang, NONOYAMA Hideto. The state of the art of SPH method applied in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(2): 256-262. (in Chinese) http://www.cgejournal.com/cn/article/id/12763
    [15]
    BELYTSCHKO T, LU Y Y, GU L. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37(2): 229-256.
    [16]
    邹德高, 龚瑾, 孔宪京, 等. 基于无网格界面模拟方法的面板坝防渗体跨尺度分析[J]. 水利学报, 2019, 50(12): 1446-1453, 1466. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912003.htm

    ZOU Degao, GONG Jin, KONG Xianjing, et al. The cross-scale analysis of concrete-face rock-fill dam anti-seepage structure based on the simulation of meshfree interface[J]. Journal of Hydraulic Engineering, 2019, 50(12): 1446-1453, 1466. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201912003.htm
    [17]
    JIE Y, TANG X W, LUAN M T, et al. Adaptive element free Galerkin method applied to analysis of earthquake induced liquefaction[J]. Earthquake Engineering and Engineering Vibration, 2008, 7(2): 217-224.
    [18]
    CHEN K, ZOU D G, KONG X J, et al. An efficient nonlinear octree SBFEM and its application to complicated geotechnical structures[J]. Computers and Geotechnics, 2018, 96: 226-245.
    [19]
    LIU G R, GU Y T. A local point interpolation method for stress analysis of two-dimensional solids[J]. Structural Engineering and Mechanics, 2001, 11(2): 221-236
    [20]
    TIAN Y H, CASSIDY M J, RANDOLPH M F, et al. A simple implementation of RITSS and its application in large deformation analysis[J]. Computers and Geotechnics, 2014, 56: 160-167.
    [21]
    赵燕兵, 刘海笑. 条形基础嵌入问题的大变形有限元对比分析[J]. 天津大学学报(自然科学与工程技术版), 2016, 49(10): 1055-1061. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201610008.htm

    ZHAO Yanbing, LIU Haixiao. Comparison of large deformation finite element methods for penetration of strip foundations[J]. Journal of Tianjin University (Science and Technology), 2016, 49(10): 1055-1061. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDX201610008.htm
    [22]
    于玉贞, 卞锋. 高土石坝地震动力响应特征弹塑性有限元分析[J]. 世界地震工程, 2010, 26(增刊1): 341-345. https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1069.htm

    YU Yuzhen, BIAN Feng. Elasto-plastic FEM analysis of dynamic response of high earth-rockfill dams during earthquake[J]. World Earthquake Engineering, 2010, 26(S1): 341-345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJDC2010S1069.htm
    [23]
    周墨臻, 张丙印, 张宗亮, 等. 超高面板堆石坝面板挤压破坏机理及数值模拟方法研究[J]. 岩土工程学报, 2015, 37(8): 1426-1432. doi: 10.11779/CJGE201508010

    ZHOU Mozhen, ZHANG Bingyin, ZHANG Zongliang, et al. Mechanisms and simulation methods for extrusion damage of concrete faces of high concrete-faced rockfill dams[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(8): 1426-1432. (in Chinese) doi: 10.11779/CJGE201508010
    [24]
    ZOU D G, XU B, KONG X J, et al. Numerical simulation of the seismic response of the Zipingpu concrete face rockfill dam during the Wenchuan earthquake based on a generalized plasticity model[J]. Computers and Geotechnics, 2013, 49(S0): 111-122.
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views (330) PDF downloads (118) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return