• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SU Si-yang, KONG De-qiong, WU Lei-ye, ZHU Bin. Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. DOI: 10.11779/CJGE202206021
Citation: SU Si-yang, KONG De-qiong, WU Lei-ye, ZHU Bin. Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(6): 1156-1165. DOI: 10.11779/CJGE202206021

Development and validation of a modified moving boundary model to simulate liquefaction-solidification behaviors of seabed under wave loading

More Information
  • Received Date: August 07, 2021
  • Available Online: September 22, 2022
  • An analysis method is proposed based on an existing moving boundary model to assess the response of seabed under wave loading, accounting for the effects of fluid viscosity and the boundary of the seabed. The potential flow equations in the original model are replaced by the laminar Navier-Stokes equations so that the viscous two-layer fluid system consisting of the liquefied/fluidized seabed and the water above it can be described reasonably. Meanwhile, the source term in the governing equations for the wave-induced shear stress calculation model is updated to consider the effects of the seabed boundary. The centrifugal model tests are carried out to validate and calibrate this model, as well as to demonstrate its capability of modelling the liquefaction/solidification of the seabed, in terms of the development of excess pore pressure and void ratio. The results show that the liquefied seabed has a high viscosity, which may lead to overestimation of the seabed movement amplitude, especially for sandy soils. Comparisons between the calculations based on seabed with infinite and finite depths show discernible discrepancies, thus it is suggested the effects of the seabed boundary should be considered in modelling. This model is also found to be capable of capturing the increase in soil strength within a certain depth after wave loading and the amplification of the pore pressure amplitude.
  • [1]
    BJERRUM L. Geotechnical problems involved in foundations of structures in the North Sea[J]. Géotechnique, 1973, 23(3): 319–358. doi: 10.1680/geot.1973.23.3.319
    [2]
    ISHIHARA K, YAMAZAKI A. Analysis of wave-induced liquefaction in seabed deposits of sand[J]. Soils and Foundations, 1984, 24(3): 85–100. doi: 10.3208/sandf1972.24.3_85
    [3]
    杨少丽, 沈渭铨, 杨作升. 波浪作用下海底粉砂液化的机理分析[J]. 岩土工程学报, 1995(4): 28–37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC504.003.htm

    YANG Shao-li, SHEN Wei-quan, YANG Zuo-sheng. The mechanism analysis of seafloor silt liquefaction under wave loads[J]. Chinese Journal of Geotechnical Engineering, 1995(4): 28–37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC504.003.htm
    [4]
    来向华, 陈云敏. 海床—管道原位检测及水动力响应分析[D]. 杭州: 浙江大学, 2009.

    LAI Xiang-hua, CHEN Yun-min. Reasearch on In-Situ Inspection and Hydrodynamic Analysis of Seabed-Pipeline System[D]. Hangzhou: Zhejiang University, 2009. (in Chinese)
    [5]
    MIYAMOTO J, SASSA S, SEKIGUCHI H. Progressive solidification of a liquefied sand layer during continued wave loading[J]. Géotechnique, 2004, 54(10): 617–629. doi: 10.1680/geot.2004.54.10.617
    [6]
    SUMER B M, HATIPOGLU F, FREDSØE J, et al. The sequence of sediment behaviour during wave-induced liquefaction[J]. Sedimentology, 2006, 53(3): 611–629. doi: 10.1111/j.1365-3091.2006.00763.x
    [7]
    贾永刚, 史文君, 单红仙, 等. 黄河口粉土强度丧失与恢复过程现场振动试验研究[J]. 岩土力学, 2005, 26(3): 351–358. doi: 10.3969/j.issn.1000-7598.2005.03.004

    JIA Yong-gang, SHI Wen-jun, SHAN Hong-xian, et al. In-situ test study on silt strength's loss and recovery due to vibration load in the Yellow River mouth[J]. Rock and Soil Mechanics, 2005, 26(3): 351–358. (in Chinese) doi: 10.3969/j.issn.1000-7598.2005.03.004
    [8]
    栾茂田, 张晨明, 王栋, 等. 波浪作用下海床孔隙水压力发展过程与液化的数值分析[J]. 水利学报, 2004(2): 94–100. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402016.htm

    LUAN Mao-tian, ZHANG Chen-ming, WANG Dong, et al. Numerical analysis of residual pore water pressure development and evaluation of liquefaction potential of seabed under wave loading[J]. Journal of Hydraulic Engineering, 2004(2): 94–100. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB200402016.htm
    [9]
    YE J H, JENG D, WANG R, et al. Validation of a 2-D semi-coupled numerical model for fluid-structure-seabed interaction[J]. Journal of Fluids and Structures, 2013, 42: 333–357. doi: 10.1016/j.jfluidstructs.2013.04.008
    [10]
    王良民, 叶剑红, 朱长歧. 近海欠密实砂质海床内波致渐进液化特征研究[J]. 岩土力学, 2015, 36(12): 3583–3588. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512031.htm

    WANG Liang-min, YE Jian-hong, ZHU Chang-qi. Investigation on the wave-induced progressive liquefaction of offshore loosely deposited sandy seabed[J]. Rock and Soil Mechanics, 2015, 36(12): 3583–3588. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201512031.htm
    [11]
    ZHAO H Y, JENG D S, GUO Z, et al. Two-dimensional model for pore pressure accumulations in the vicinity of a buried pipeline[J]. Journal of Offshore Mechanics and Arctic Engineering, 2014, 136(4): 042001. doi: 10.1115/1.4027955
    [12]
    SASSA S, SEKIGUCHI H, MIYAMOTO J. Analysis of progressive liquefaction as a moving-boundary problem[J]. Géotechnique, 2001, 51(10): 847–857. doi: 10.1680/geot.2001.51.10.847
    [13]
    DALRYMPLE R A, LIU P L-F. Waves over soft muds: a two-layer fluid model[J]. Journal of Physical Oceanography, 1978, 8(6): 1121–1131. doi: 10.1175/1520-0485(1978)008<1121:WOSMAT>2.0.CO;2
    [14]
    LIU Z, JENG D S, CHAN A H C, et al. Wave-induced progressive liquefaction in a poro-elastoplastic seabed: a two-layered model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2009, 33(5): 591–610. doi: 10.1002/nag.734
    [15]
    HSU J R C, JENG D S. Wave-induced soil response in an unsaturated anisotropic seabed of finite thickness[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1994, 18(11): 785–807. doi: 10.1002/nag.1610181104
    [16]
    刘占阁. 波浪作用下海床累积孔隙水压力响应与液化分析[D]. 大连: 大连理工大学, 2008.

    LIU Zhan-ge. Study on Wave-Induced Response of Progressive Pore Pressure and Liquefaction in Seabed[D]. Dalian: Dalian University of Technology, 2008. (in Chinese)
    [17]
    WU L Y, KONG D Q, ZHU B, et al. Centrifuge modelling of wave-induced seabed response in clay[J]. Géotechnique, doi: https://doi.org/10.1680/jeot.21.00105.
    [18]
    吴雷晔. 波浪作用下地基演变及管土相互作用模型试验与数值分析[D]. 杭州: 浙江大学, 2021.

    WU Lei-ye. Experimental and Numerical Study on Seabed Response and Pipe-Soil Interaction under Waves[D]. Hangzhou: Zhejiang University, 2021. (in Chinese)
    [19]
    鲁双. 海积超软土强度与流变特性试验研究[D]. 大连: 大连理工大学, 2017.

    LU Shuang. The Experimental Study on the Strength and Rheological Properties of Ultra-Soft Marine Soil[D]. Dalian: Dalian University of Technology, 2017. (in Chinese)
  • Related Articles

    [1]A mathematical model describing the frozen deformation of unsaturated clayey soils in a closed system[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240822
    [2]ZHANG Nan, LI Bo, WANG Tiancheng, JIANG Jiwei, WANG Hanwu. Centrifugal model tests on stability of embankment on soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S1): 222-225. DOI: 10.11779/CJGE2023S10032
    [3]LIANG Guang-chuan, WANG Shi-ji, LI Xian, MAO Xin, SHEN Tai-yu, HE Bing-hui. Experimental study on permeability characteristics of sandy clayey purple soil[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S2): 220-224. DOI: 10.11779/CJGE2018S2044
    [4]FAN Ke-wei, LIU Si-hong, XU Si-yuan, WANG Jian-lei. Field tests on retaining wall constructed with soilbags filled with clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2341-2348. DOI: 10.11779/CJGE201812024
    [5]WANG Cun, HOU Yu-jing, LIU Guo-bao, PENG Ren. Centrifugal model tests on vertical strip drains in soft soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(s1): 171-176. DOI: 10.11779/CJGE2017S1034
    [6]ZHU Ya-jun, PENG Jun, CHEN Qun. Contact scouring tests on sandy gravel and cohesive soil[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(z2): 92-97. DOI: 10.11779/CJGE2016S2015
    [7]CHEN Qun, DUAN Bo. Filter criteria for gravelly clayey soils with cracks[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(10): 1802-1807. DOI: 10.11779/CJGE201410006
    [8]SHAO Yu-xian, SHI Bin, LIU Chun, GU Kai, TANG Chao-sheng. Temperature effect on hydro-physical properties of clayey soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1576-1582.
    [9]WANG Xiuyan, LIU Changli. Discussion on permeability of deep clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 308-312.
    [10]GUAN Jiteng, FANG Wenjing. Coupling relationship for electrochemical hydrodynamics in water-saturated sandy soil and clayey soil[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(6): 664-667.
  • Cited by

    Periodical cited type(3)

    1. 蒋明镜,王华宁,张璐璐,朱海涛,李承超,张旭东,陈杨明,黄佳佳,魏鑫,谭林,徐继涛,李文昊,常晓栋,张誓杰. 水合物开采及海洋环境诱发地质灾害机理和风险评估研究现状与展望. 工程地质学报. 2024(04): 1424-1438 .
    2. 张建民,单红仙,王振强,王志才,王津津. 利用原位测试试验确定黄河口潮滩粉质土固结状态研究. 岩土工程学报. 2024(09): 1994-2001 . 本站查看
    3. 张建民,单红仙,王振强,王志才,王津津. 黄河三角洲潮滩表层沉积物在潮波和波浪作用下的孔压响应及固结机理现场试验研究. 岩土工程学报. 2024(10): 2111-2118 . 本站查看

    Other cited types(2)

Catalog

    Article views (175) PDF downloads (115) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return