Citation: | WANG Gang, WANG Pengju, WANG Changsheng, JIANG Yujing, LUAN Hengjie, HUANG Na. Shear mechanical behaviors of ceramic proppant-infilled sandstone fractures under constant normal stiffness boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1790-1800. DOI: 10.11779/CJGE20220544 |
[1] |
RAMLAN A S, ZIN R M, ABU BAKAR N F, et al. Recent progress on proppant laboratory testing method: Characterisation, conductivity, transportation, and erosivity[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108871. doi: 10.1016/j.petrol.2021.108871
|
[2] |
ZHANG F, FANG Y, ELSWORTH D, et al. Evolution of friction and permeability in a propped fracture under shear[J]. Geofluids, 2017: 1-13.
|
[3] |
HARI S, KRISHNA S, GURRALA L N, et al. Impact of reservoir, fracturing fluid and proppant characteristics on proppant crushing and embedment in sandstone formations[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104187. doi: 10.1016/j.jngse.2021.104187
|
[4] |
ZOU C N, TAO S Z, HAN W X, et al. Geological and geochemical characteristics and exploration prospect of coal-derived tight sandstone gas in China: case study of the Ordos, Sichuan, and Tarim Basins[J]. Acta Geologica Sinica-English Edition, 2018, 92(4): 1609-1626. doi: 10.1111/1755-6724.13647
|
[5] |
KAZEMI H. Low-permeability gas sands[J]. Journal of Petroleum Technology, 2019, 34(10): 2229-2232.
|
[6] |
LEE H S, CHO T F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318. doi: 10.1007/s00603-002-0028-y
|
[7] |
YEO I W, DE FREITAS M H, ZIMMERMAN R W. Effect of shear displacement on the aperture and permeability of a rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1051-1070. doi: 10.1016/S0148-9062(98)00165-X
|
[8] |
LIU C H, NAGEL S R, SCHECTER D A, et al. Force fluctuations in bead packs[J]. Science, 1995, 269(5223): 513-515. doi: 10.1126/science.269.5223.513
|
[9] |
PARKER M, WEAVER J, VAN BATENBURG D. Understanding proppant flowback[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 1999.
|
[10] |
SHRIVASTAVA A K, RAO K S. Physical modeling of shear behavior of infilled rock joints under CNL and CNS boundary conditions[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 101-118. doi: 10.1007/s00603-017-1318-8
|
[11] |
TANG Y, RANJITH P G, WU B. Experimental study of effects of shearing on proppant embedment behaviour of tight gas sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 172: 228-246. doi: 10.1016/j.petrol.2018.07.066
|
[12] |
KIMURA T, IKUSADA K, ESAKI T. Surface roughness and shear behavior of rock joints[C]//ISRM International Symposium-EUROCK 93. OnePetro, 1993.
|
[13] |
TANG Y, RANJITH P G, PERERA M S, et al. Influences of proppant concentration and fracturing fluids on proppant-embedment behavior for inhomogeneous rock medium: an experimental and numerical study[J]. SPE Production & Operations, 2018, 33(4): 666-678.
|
[14] |
TANG Y, RANJITH P G. An experimental and analytical study of the effects of shear displacement, fluid type, joint roughness, shear strength, friction angle and dilation angle on proppant embedment development in tight gas sandstone reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 94-109. doi: 10.1016/j.ijrmms.2018.03.008
|
[15] |
尹乾, 靖洪文, 孟波, 等. 恒定法向刚度条件下三维粗糙裂隙面剪切力学特性[J]. 岩石力学与工程学报, 2020, 39(11): 2213-2225. doi: 10.13722/j.cnki.jrme.2020.0259
YIN Qian, JING Hongwen, MENG Bo, et al. Shear mechanical properties of 3D rough rock fracture surfaces under constant normal stiffness conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2213-2225. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0259
|
[16] |
ISRM. Rock characterization, testing and monitoring-ISRM suggested methods[C]// Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Pergamon, Oxford, 1981: 3-52.
|
[17] |
崔国建, 张传庆, 韩华超, 等. CNL及CNS条件下结构面剪切特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3384-3392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2013.htm
CUI Guojian, ZHANG Chuanqing, HAN Huachao, et al. Experiment study on shear behavior of artificial joint under CNL and CNS boundary conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3384-3392. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2013.htm
|
[18] |
刘日成, 尹乾, 杨瀚清, 等. 恒定法向刚度边界条件下三维粗糙节理面循环剪切力学特性[J]. 岩石力学与工程学报, 2021, 40(6): 1092-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106002.htm
LIU Richeng, YIN Qian, YANG Hanqing, et al. Cyclic shear mechanical properties of 3D rough joint surfaces under constant normal stiffness(CNS) boundary conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1092-1109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106002.htm
|
[19] |
TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
|
[20] |
TANG Z C, ZHANG Y B. Temperature-dependent peak shear-strength criterion for granite fractures[J]. Engineering Geology, 2020, 269: 105552. doi: 10.1016/j.enggeo.2020.105552
|
[21] |
JIANG Y, XIAO J, TANABASHI Y, et al. Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 275-286. doi: 10.1016/j.ijrmms.2003.08.004
|
[22] |
XIA C C, YU Q F, GUI Y, et al. Shear behavior of rock joints under CNS boundary condition[C]// ZHANG L, GONCALVE S DA SILVA B, ZHAO C. GeoShanghai International Conference. Singapore, 2018: 263-274.
|
[23] |
INDRARATNA B, HAQUE A. Experimental study of shear behavior of rock joints under constant normal stiffness conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 141. e1-141. e14.
|
[24] |
INDRARATNA B, HAQUE A, AZIZ N. Laboratory modelling of shear behaviour of soft joints under constant normal stiffness conditions[J]. Geotechnical and Geological Engineering, 1998, 16(1): 17-44. doi: 10.1023/A:1008880112926
|
[25] |
KATENDE A, O'CONNELL L, RICH A, et al. A comprehensive review of proppant embedment in shale reservoirs: experimentation, modeling and future prospects[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104143.
|
[26] |
BANDARARA K M A S, RANJITH P G, RATHNAWEERA T D, et al. Crushing and embedment of proppant packs under cyclic loading: an insight to enhanced unconventional oil/gas recovery[J]. Geoscience Frontiers, 2021, 12(6): 100970. doi: 10.1016/j.gsf.2020.02.017
|
[1] | ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041 |
[2] | LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012 |
[3] | TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025 |
[4] | GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605. |
[5] | FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320. |
[6] | LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921. |
[7] | WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416. |
[8] | CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187. |
[9] | LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740. |
[10] | CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580. |