• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Gang, WANG Pengju, WANG Changsheng, JIANG Yujing, LUAN Hengjie, HUANG Na. Shear mechanical behaviors of ceramic proppant-infilled sandstone fractures under constant normal stiffness boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1790-1800. DOI: 10.11779/CJGE20220544
Citation: WANG Gang, WANG Pengju, WANG Changsheng, JIANG Yujing, LUAN Hengjie, HUANG Na. Shear mechanical behaviors of ceramic proppant-infilled sandstone fractures under constant normal stiffness boundary conditions[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(9): 1790-1800. DOI: 10.11779/CJGE20220544

Shear mechanical behaviors of ceramic proppant-infilled sandstone fractures under constant normal stiffness boundary conditions

More Information
  • Received Date: May 04, 2022
  • Available Online: March 05, 2023
  • The shear behavior of sandstone fractures filled with proppant has an important impact on tight gas production. In this study, the effects of normal stresses (1~6 MPa), normal stiffnesses (0~5 GPa/m), initial normal stresses (2~6 MPa) and proppant sizes (16/30 mesh, 20/40 mesh and 30/50 mesh) on the shear behaviors of ceramic proppant-infilled sandstone are revealed through the direct shear tests on two kinds of rough sandstone under the constant normal load (CNL) and constant normal stiffness (CNS) boundary conditions. The results indicate that after adding proppant, the peak friction angle, the shear stiffness and the peak shear stress of fracture decrease, the shear contraction increases and the shear dilation decreases. With the increase of the normal stress, the shear strength increases. Under the constant normal stiffness boundary, with the increase of the normal stiffness, the residual shear stress increases, but the peak shear stress, the final shear dilation and the apparent friction angle decrease. With the increase of the initial normal stress, the peak shear stress, the residual shear stress and the shear stiffness increase, and the variation range is higher than that of the normal stiffness. The increase of the initial normal stress inhibits the shear dilation of the fracture surface, and increases the apparent friction angle of the fracture. With the decrease of the proppant size, the shear strength increases and the dilatancy displacement increases.
  • [1]
    RAMLAN A S, ZIN R M, ABU BAKAR N F, et al. Recent progress on proppant laboratory testing method: Characterisation, conductivity, transportation, and erosivity[J]. Journal of Petroleum Science and Engineering, 2021, 205: 108871. doi: 10.1016/j.petrol.2021.108871
    [2]
    ZHANG F, FANG Y, ELSWORTH D, et al. Evolution of friction and permeability in a propped fracture under shear[J]. Geofluids, 2017: 1-13.
    [3]
    HARI S, KRISHNA S, GURRALA L N, et al. Impact of reservoir, fracturing fluid and proppant characteristics on proppant crushing and embedment in sandstone formations[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104187. doi: 10.1016/j.jngse.2021.104187
    [4]
    ZOU C N, TAO S Z, HAN W X, et al. Geological and geochemical characteristics and exploration prospect of coal-derived tight sandstone gas in China: case study of the Ordos, Sichuan, and Tarim Basins[J]. Acta Geologica Sinica-English Edition, 2018, 92(4): 1609-1626. doi: 10.1111/1755-6724.13647
    [5]
    KAZEMI H. Low-permeability gas sands[J]. Journal of Petroleum Technology, 2019, 34(10): 2229-2232.
    [6]
    LEE H S, CHO T F. Hydraulic characteristics of rough fractures in linear flow under normal and shear load[J]. Rock Mechanics and Rock Engineering, 2002, 35(4): 299-318. doi: 10.1007/s00603-002-0028-y
    [7]
    YEO I W, DE FREITAS M H, ZIMMERMAN R W. Effect of shear displacement on the aperture and permeability of a rock fracture[J]. International Journal of Rock Mechanics and Mining Sciences, 1998, 35(8): 1051-1070. doi: 10.1016/S0148-9062(98)00165-X
    [8]
    LIU C H, NAGEL S R, SCHECTER D A, et al. Force fluctuations in bead packs[J]. Science, 1995, 269(5223): 513-515. doi: 10.1126/science.269.5223.513
    [9]
    PARKER M, WEAVER J, VAN BATENBURG D. Understanding proppant flowback[C]//SPE Annual Technical Conference and Exhibition. OnePetro, 1999.
    [10]
    SHRIVASTAVA A K, RAO K S. Physical modeling of shear behavior of infilled rock joints under CNL and CNS boundary conditions[J]. Rock Mechanics and Rock Engineering, 2018, 51(1): 101-118. doi: 10.1007/s00603-017-1318-8
    [11]
    TANG Y, RANJITH P G, WU B. Experimental study of effects of shearing on proppant embedment behaviour of tight gas sandstone reservoirs[J]. Journal of Petroleum Science and Engineering, 2019, 172: 228-246. doi: 10.1016/j.petrol.2018.07.066
    [12]
    KIMURA T, IKUSADA K, ESAKI T. Surface roughness and shear behavior of rock joints[C]//ISRM International Symposium-EUROCK 93. OnePetro, 1993.
    [13]
    TANG Y, RANJITH P G, PERERA M S, et al. Influences of proppant concentration and fracturing fluids on proppant-embedment behavior for inhomogeneous rock medium: an experimental and numerical study[J]. SPE Production & Operations, 2018, 33(4): 666-678.
    [14]
    TANG Y, RANJITH P G. An experimental and analytical study of the effects of shear displacement, fluid type, joint roughness, shear strength, friction angle and dilation angle on proppant embedment development in tight gas sandstone reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 107: 94-109. doi: 10.1016/j.ijrmms.2018.03.008
    [15]
    尹乾, 靖洪文, 孟波, 等. 恒定法向刚度条件下三维粗糙裂隙面剪切力学特性[J]. 岩石力学与工程学报, 2020, 39(11): 2213-2225. doi: 10.13722/j.cnki.jrme.2020.0259

    YIN Qian, JING Hongwen, MENG Bo, et al. Shear mechanical properties of 3D rough rock fracture surfaces under constant normal stiffness conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2213-2225. (in Chinese) doi: 10.13722/j.cnki.jrme.2020.0259
    [16]
    ISRM. Rock characterization, testing and monitoring-ISRM suggested methods[C]// Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Pergamon, Oxford, 1981: 3-52.
    [17]
    崔国建, 张传庆, 韩华超, 等. CNL及CNS条件下结构面剪切特性试验研究[J]. 岩石力学与工程学报, 2019, 38(增刊2): 3384-3392. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2013.htm

    CUI Guojian, ZHANG Chuanqing, HAN Huachao, et al. Experiment study on shear behavior of artificial joint under CNL and CNS boundary conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(S2): 3384-3392. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2019S2013.htm
    [18]
    刘日成, 尹乾, 杨瀚清, 等. 恒定法向刚度边界条件下三维粗糙节理面循环剪切力学特性[J]. 岩石力学与工程学报, 2021, 40(6): 1092-1109. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106002.htm

    LIU Richeng, YIN Qian, YANG Hanqing, et al. Cyclic shear mechanical properties of 3D rough joint surfaces under constant normal stiffness(CNS) boundary conditions[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(6): 1092-1109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202106002.htm
    [19]
    TSE R, CRUDEN D M. Estimating joint roughness coefficients[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1979, 16(5): 303-307.
    [20]
    TANG Z C, ZHANG Y B. Temperature-dependent peak shear-strength criterion for granite fractures[J]. Engineering Geology, 2020, 269: 105552. doi: 10.1016/j.enggeo.2020.105552
    [21]
    JIANG Y, XIAO J, TANABASHI Y, et al. Development of an automated servo-controlled direct shear apparatus applying a constant normal stiffness condition[J]. International Journal of Rock Mechanics and Mining Sciences, 2004, 41(2): 275-286. doi: 10.1016/j.ijrmms.2003.08.004
    [22]
    XIA C C, YU Q F, GUI Y, et al. Shear behavior of rock joints under CNS boundary condition[C]// ZHANG L, GONCALVE S DA SILVA B, ZHAO C. GeoShanghai International Conference. Singapore, 2018: 263-274.
    [23]
    INDRARATNA B, HAQUE A. Experimental study of shear behavior of rock joints under constant normal stiffness conditions[J]. International Journal of Rock Mechanics and Mining Sciences, 1997, 34(3/4): 141. e1-141. e14.
    [24]
    INDRARATNA B, HAQUE A, AZIZ N. Laboratory modelling of shear behaviour of soft joints under constant normal stiffness conditions[J]. Geotechnical and Geological Engineering, 1998, 16(1): 17-44. doi: 10.1023/A:1008880112926
    [25]
    KATENDE A, O'CONNELL L, RICH A, et al. A comprehensive review of proppant embedment in shale reservoirs: experimentation, modeling and future prospects[J]. Journal of Natural Gas Science and Engineering, 2021, 95: 104143.
    [26]
    BANDARARA K M A S, RANJITH P G, RATHNAWEERA T D, et al. Crushing and embedment of proppant packs under cyclic loading: an insight to enhanced unconventional oil/gas recovery[J]. Geoscience Frontiers, 2021, 12(6): 100970. doi: 10.1016/j.gsf.2020.02.017
  • Related Articles

    [1]ZHANG Chen, WANG Yi, HAN Xiao-feng, JIN Long. Numerical simulation of frost-heave process in lining canals considering contact behaviors of damage effects[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(S2): 188-193. DOI: 10.11779/CJGE2022S2041
    [2]LIU Wen-hua, YANG Qing, TANG Xiao-wei, UZUOKA Ryosuke. Numerical simulation of hydro-mechanical behaviors of unsaturated soils under fully undrained conditions[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 486-494. DOI: 10.11779/CJGE201703012
    [3]TU Bing-xiong, JIA Jin-qing, YU Jin, CAI Yan-yan, LIU Shi-yu. Numerical simulation of influence on mechanical behavior of flexible retaining method with prestressed anchor[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 146-153. DOI: 10.11779/CJGE2014S2025
    [4]GE Shi-ping, XIE Dong-wu, DING Wen-qi, OUYANG Wen-biao. Simplified numerical simulation method for segment joints of shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(9): 1600-1605.
    [5]FENG Hu, LIU Guo-bin. Numerical simulation of failure mechanism of deep foundation pits in soft soil considering impact of piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(sup2): 314-320.
    [6]LUO Pingping, ZHU Yueming, ZHAO Yongmei, HE Shan. Numerical simulation of grouting in rock mass[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 918-921.
    [7]WU Wenhua, LI Xikui. Constitutive model and numerical simulation of thermo-hydro-mechanical behavior in unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 411-416.
    [8]CHEN Zhonghui, THAM L.G., YEUNG M.R.. Renormalization study and numerical simulation on brittle failure of rocks[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 183-187.
    [9]LI Dayong, GONG Xiaonan, ZHANG Tuqiao. Numerical simulation of the buried pipelines protection adjacent to deep excavation[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 736-740.
    [10]CHEN Zhonghui, L.G.Tham, M.R.Yeung. Numerical simulation of damage and failure of rocks under different confining pressures[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 576-580.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return