• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Lanmin, CHAI Shaofeng, BO Jingshan, WANG Ping, XU Shiyang, LI Xiaobo, PU Xiaowu. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543-1554. DOI: 10.11779/CJGE20220531
Citation: WANG Lanmin, CHAI Shaofeng, BO Jingshan, WANG Ping, XU Shiyang, LI Xiaobo, PU Xiaowu. Triggering types, characteristics and disaster mechanism of seismic loess landslides[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(8): 1543-1554. DOI: 10.11779/CJGE20220531

Triggering types, characteristics and disaster mechanism of seismic loess landslides

More Information
  • Received Date: May 04, 2022
  • Available Online: August 06, 2023
  • Based on the field investigation and exploration, unmanned aerial survey and large-scale shaking table tests, the triggering types, characteristics and disaster-generating mechanism of seismic loess landslides are systematically studied. The results show that the earthquake-induced loess landslides have their distinctive characteristics in spatial distribution, single size, influencing area, plane modality, topographical and hydrological conditions, seismic intensity, deposit thickness and relations to seismic faults. They can be classified into three types from the perspective of the triggering mechanism: shear landslides, liquefaction landslides and seismic subsidence landslides. The shear landslides can be further classified according to the lithology of the sliding surface strata into three types: landslides within a loess layer, landslides on the contact surface between loess and mudstone, and landslides cutting into bedrock. The liquefaction landslides can be divided according to the location of the liquefaction layer into three types: deep liquefaction sliding type, surface liquefaction mudflow, and combined deep-surface liquefaction type. The seismic subsidence landslides can be divided into two types of landslides, subsidence slide and avalanche slide, according to the damage modes caused by seismic subsidence. This study may provide a scientific basis for the risk assessment, prevention and control of loess seismic landslides.
  • [1]
    王兰民, 蒲小武, 陈金昌. 黄土高原地震诱发滑坡分布特征与灾害风险[J]. 城市与减灾, 2019(3): 33-40. https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201903009.htm

    WANG Lanmin, PU Xiaowu, CHEN Jinchang. Distribution characteristics and disaster risk of earthquake-induced landslides in loess plateau[J]. City and Disaster Reduction, 2019(3): 33-40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSJZ201903009.htm
    [2]
    赵晋泉, 张大卫, 高树义, 等. 1303年山西洪洞8级大地震郇堡地滑之研究[J]. 山西地震, 2003(3): 16-22. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm

    ZHAO Jinquan, ZHANG Dawei, GAO Shuyi, et al. Huanbu ground slide, the relic of 1303 Hongtong, Shanxi, earthquake of M8[J]. Earthquake Research in Shanxi, 2003(3): 16-22. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ200303006.htm
    [3]
    陈国顺, 王国强. 临汾1695年八级地震及震后地表垂直运动[J]. 山西地震, 1984(4): 31-36. https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ198404007.htm

    CHEN Guoshun, WANG Guoqiang. The vertical movement of ground surface after the 1695 M8 earthquake in Linfen[J]. Earthquake Research in Shanxi, 1984(4): 31-36. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SXDZ198404007.htm
    [4]
    CLOSE U, MCCORMICK E. Where the mountains walked[J]. The National Geographic Magazine, 1922, LI(5): 443-464.
    [5]
    张晓超, 裴向军, 张茂省, 等. 强震触发黄土滑坡流滑机理的试验研究: 以宁夏党家岔滑坡为例[J]. 工程地质学报, 2018, 26(5): 1219-1226. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm

    ZHANG Xiaochao, PEI Xiangjun, ZHANG Maosheng, et al. Experimental study on mechanism of flow slide of loess landslides triggered by strong earthquake—a case study in Dangjiacha, Ningxia Province[J]. Journal of Engineering Geology, 2018, 26(5): 1219-1226. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201805013.htm
    [6]
    王家鼎, 张倬元. 典型高速黄土滑坡群的系统工程地质研究[M]. 成都: 四川科学技术出版社, 1999.

    WANG Jiading, ZHANG Zhuoyuan. Systematic Engineering Geological Study on Typical High-Speed Loess Landslide Group[M]. Chengdu: Sichuan Scientific & Technical Publishers, 1999. (in Chinese)
    [7]
    王家鼎, 张倬元. 地震诱发高速黄土滑坡的机理研究[J]. 岩土工程学报, 1999, 21(6): 670-674. http://www.cgejournal.com/cn/article/id/10420

    WANG Jiading, ZHANG Zhuoyuan. A study on the mechanism of high speed loess landslide induced by earthquake[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 670-674. (in Chinese) http://www.cgejournal.com/cn/article/id/10420
    [8]
    WANG G H, SASSA K. Pore-pressure generation and movement of rainfall-induced landslides: effects of grain size and fine-particle content[J]. Engineering Geology, 2003, 69(1/2): 109-125.
    [9]
    张振中. 黄土地震灾害预测[M]. 北京: 地震出版社, 1999.

    ZHANG Zhenzhong. Earthquake Disaster Prediction of Loess[M]. Beijing: Seismological Press, 1999. (in Chinese)
    [10]
    卢育霞, 石玉成, 陈永明, 等. 地震诱发黄土滑坡的滑距估测[J]. 西北地震学报, 2006(3): 248-251. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603009.htm

    LU Yuxia, SHI Yucheng, CHEN Yongming, et al. Slippage estimation of the loess landslide triggered by earthquake[J]. Northwestern Seismological Journal, 2006(3): 248-251. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ200603009.htm
    [11]
    王鼐, 王兰民, 王谦, 等. 黄土高原地震作用下黄土滑坡滑距预测方法[J]. 地震工程学报, 2016, 38(4): 533-540. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201604007.htm

    WANG Nai, WANG Lanmin, WANG Qian, et al. Forecasting method for sliding distance of seismic landslides on the loess plateau, China[J]. China Earthquake Engineering Journal, 2016, 38(4): 533-540. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201604007.htm
    [12]
    王兰民. 黄土地层大规模地震液化滑移的机理与风险评估[J]. 岩土工程学报, 2020, 42(1): 1-19. doi: 10.11779/CJGE202001001

    WANG Lanmin. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. (in Chinese) doi: 10.11779/CJGE202001001
    [13]
    国家地震局兰州地震研究所, 宁夏回族自治区地震队. 一九二○年海原大地震[M]. 北京: 地震出版社, 1980.

    Lanzhou Institute of Seismology, State Seismological Bureau, Seismological Team of Ningxia Hui Autonomous Region. Haiyuan Earthquake in 1920[M]. Beijing: Seismological Press, 1980. (in Chinese)
    [14]
    王兰民. 黄土动力学[M]. 北京: 地震出版社, 2003.

    WANG Lanmin. Loess Dynamics[M]. Beijing: Seismological Press, 2003. (in Chinese)
    [15]
    白铭学, 王增光. 宁夏黄土高原区低角度滑移研究报告[R]. 宁夏: 宁夏回族自治区地震局, 1987.

    BAI Mingxue, WANG Zengguang. Study on Low Angle Slip in Loess Plateau of Ningxia[R]. Ningxia: Earthquake Agency of Ningxia Hui Autonomous Region, 1987. (in Chinese)
    [16]
    王兰民, 吴志坚. 岷县漳县6.6级地震震害特征及其启示[J]. 地震工程学报, 2013, 35(3): 401-412. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303002.htm

    WANG Lanmin, WU Zhijian. Earthquake damage characteristics of the Minxian-Zhangxian MS6.6 earthquake and its lessons[J]. China Earthquake Engineering Journal, 2013, 35(3): 401-412. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ201303002.htm
  • Related Articles

    [1]Review on water disaster prevention of tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240972
    [2]A discrete element simulation method of clayey grain-cementing type methane hydrate bearing sediment accounting for pore size and physicochemical properties[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240845
    [3]DENG Shu-xin, WANG Ming-yang, LI Jie, ZHANG Guo-kai, WANG Zhen. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. DOI: 10.11779/CJGE202012007
    [4]WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. DOI: 10.11779/CJGE202001001
    [5]WU Zhi-jian, CHEN Yu-jin, WANG Qian, ZHAO Duo-yin, ZHANG Dan. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165-168. DOI: 10.11779/CJGE2019S2042
    [6]DU Xiu-li, LI Yang, XU Cheng-shun, LU De-chun, XU Zi-gang, JIN Liu. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. DOI: 10.11779/CJGE201802002
    [7]WANG Kai-xing, PAN Yi-shan, DOU Lin-ming. Energy transfer in block-rock mass during propagation of pendulum-type waves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2309-2314. DOI: 10.11779/CJGE201612021
    [8]ZHANG Xu-hui, WU Xin, YU Jian-lin, HE Meng, GONG Xiao-nan. New slurry pressure type soil-nailing technology and its working mechanism[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 227-232. DOI: 10.11779/CJGE2014S2038
    [9]ZHOU Jian, DU Qiang, LI Ye-xun, ZHANG Jiao. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. DOI: 10.11779/CJGE201411006
    [10]LU Li, LI Liang, DENG Yu, HU Tian-shi, LI Xiao-xiao. Failure mechanism of mortar in front of bearing plate of compression type anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2110-2116.
  • Cited by

    Periodical cited type(2)

    1. 徐其. 激振荷载作用下桩基础变形及力学响应特性试验研究. 江西建材. 2024(12): 267-269+272 .
    2. 曹小林,周凤玺,戴国亮,龚维明. 激振荷载作用下桩基础动力响应的现场试验分析. 岩土工程学报. 2023(S1): 171-175 . 本站查看

    Other cited types(0)

Catalog

    Article views (702) PDF downloads (279) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return