• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Mi, HUANG Yi-ming, WANG Pi-guang, XU Hai-bin, DU Xiu-li. Analytical solution for water-pile-soil interaction under horizontal dynamic loads on pile head[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 907-915. DOI: 10.11779/CJGE202205014
Citation: ZHAO Mi, HUANG Yi-ming, WANG Pi-guang, XU Hai-bin, DU Xiu-li. Analytical solution for water-pile-soil interaction under horizontal dynamic loads on pile head[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 907-915. DOI: 10.11779/CJGE202205014

Analytical solution for water-pile-soil interaction under horizontal dynamic loads on pile head

More Information
  • Received Date: July 15, 2021
  • Available Online: September 22, 2022
  • Offshore structures of a single pile are generally subjected to a variety of horizontal dynamic loads. In order to study the dynamic response of end-supported piles under horizontal dynamic loads on pile head, a three-dimensional water-pile-soil interaction system model is established. The pile and soil are assumed to be a linear viscoelastic media, and the water is assumed to be a linear acoustic media. Through the Helmholtz method for decomposition and separation of variables, an analytical solution is obtained for the resistance of the soil layer and water media to the water-pile-soil system. The displacement and horizontal dynamic complex impedance of the pile are then obtained in frequency domain based on the continuity conditions of contact interface between the pile and water and soil. The present solution is compared with the substructure method to verify the rationality of the method. Finally, the influences of water on the displacement response of pile top under different pile and soil parameters are studied. The results indicate that it is necessary to consider the water-pile-soil interaction in the design of the piles installed in offshore areas.
  • [1]
    WANG K H, WU W B, ZHANG Z Q, et al. Vertical dynamic response of an inhomogeneous viscoelastic pile[J]. Computers and Geotechnics, 2010, 37(4): 536–544. doi: 10.1016/j.compgeo.2010.03.001
    [2]
    MANNA B, BAIDYA D K. Dynamic nonlinear response of pile foundations under vertical vibration—theory versus experiment[J]. Soil Dynamics and Earthquake Engineering, 2010, 30(6): 456–469. doi: 10.1016/j.soildyn.2010.01.002
    [3]
    GAO L, WANG K H, XIAO S, et al. Dynamic response of a pile considering the interaction of pile variable cross section with the surrounding layered soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2017, 41(9): 1196–1214. doi: 10.1002/nag.2681
    [4]
    LIU H, WU W B, NI X Y, et al. Influence of soil mass on the vertical dynamic characteristics of pipe piles[J]. Computers and Geotechnics, 2020, 126: 103730. doi: 10.1016/j.compgeo.2020.103730
    [5]
    GAZETAS G, DOBRY R. Horizontal response of piles in layered soils[J]. Journal of Geotechnical Engineering, 1984, 110(1): 20–40. doi: 10.1061/(ASCE)0733-9410(1984)110:1(20)
    [6]
    DEZI F, CARBONARI S, LEONI G. A model for the 3D kinematic interaction analysis of pile groups in layered soils[J]. Earthquake Engineering & Structural Dynamics, 2009, 38(11): 1281–1305.
    [7]
    DI LAORA R, MANDOLINI A, MYLONAKIS G. Insight on kinematic bending of flexible piles in layered soil[J]. Soil Dynamics and Earthquake Engineering, 2012, 43: 309–322. doi: 10.1016/j.soildyn.2012.06.020
    [8]
    NOVAK M. Dynamic stiffness and damping of piles[J]. Canadian Geotechnical Journal, 1974, 11(4): 574–598. doi: 10.1139/t74-059
    [9]
    NOGAMI T, NOVAK M. Resistance of soil to a horizontally vibrating pile[J]. Earthquake Engineering & Structural Dynamics, 1977, 5(3): 249–261.
    [10]
    郑长杰, 丁选明, 黄旭, 等. 滞回阻尼土中大直径管桩纵向振动响应解析解[J]. 岩石力学与工程学报, 2014, 33(增刊1): 3284–3290. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1097.htm

    ZHENG Chang-jie, DING Xuan-ming, HUANG Xu, et al. Analytical solution of vertical vibration response of large diameter pipe pile in hysteretic damping soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S1): 3284–3290. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S1097.htm
    [11]
    栾鲁宝, 丁选明, 周仕礼, 等. 考虑竖向荷载的桩基水平振动响应解析解[J]. 建筑结构, 2015, 45(19): 80–86. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201519021.htm

    LUAN Lu-bao, DING Xuan-ming, ZHOU Shi-li, et al. Analytical solution of lateral vibration response of an axial loaded pile[J]. Building Structure, 2015, 45(19): 80–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201519021.htm
    [12]
    CHWANG A T, HOUSNER G W. Hydrodynamic pressures on sloping dams during earthquakes: Part 1 Momentum method[J]. Journal of Fluid Mechanics, 1978, 87(2): 335–341. doi: 10.1017/S0022112078001639
    [13]
    WILLIAMS A N. Earthquake response of submerged circular cylinder[J]. Ocean Engineering, 1986, 13(6): 569–585. doi: 10.1016/0029-8018(86)90040-5
    [14]
    刘振宇, 李乔, 赵灿晖, 等. 圆形空心深水桥墩在地震作用下的附加动水压力[J]. 西南交通大学学报, 2008, 43(2): 200–205, 212. doi: 10.3969/j.issn.0258-2724.2008.02.010

    LIU Zhen-yu, LI Qiao, ZHAO Can-hui, et al. Earthquake-induced added hydrodynamic pressure on circular hollow piers in deep water[J]. Journal of Southwest Jiaotong University, 2008, 43(2): 200–205, 212. (in Chinese) doi: 10.3969/j.issn.0258-2724.2008.02.010
    [15]
    WANG P G, ZHAO M, DU X L, et al. Simplified evaluation of earthquake-induced hydrodynamic pressure on circular tapered cylinders surrounded by water[J]. Ocean Engineering, 2018, 164: 105–113. doi: 10.1016/j.oceaneng.2018.06.048
    [16]
    SPYRAKOS C C, XU C J. Soil-structure-water interaction of intake-outlet towers allowed to uplift[J]. Soil Dynamics and Earthquake Engineering, 1997, 16(2): 151–159. doi: 10.1016/S0267-7261(96)00034-6
    [17]
    YE J H, JENG D S, CHAN A H C, et al. 3D integrated numerical model for Fluid-Structures-Seabed Interaction (FSSI): loosely deposited seabed foundation[J]. Soil Dynamics and Earthquake Engineering, 2017, 92: 239–252. doi: 10.1016/j.soildyn.2016.10.026
    [18]
    YAMADA Y, KAWANO K, IEMURA H, et al. Wave and earthquake response of offshore structures with soil-structure interaction[J]. Doboku Gakkai Ronbunshu, 1988, 1988(398): 157–166. doi: 10.2208/jscej.1988.398_157
    [19]
    楼云锋. 流体–结构–土体动力耦合系统数值模拟方法及应用[D]. 上海: 上海交通大学, 2015.

    LOU Yun-feng. Numerical Simulation Method and Application of Fluid-Structure-Soil Dynamic Coupling System[D]. Shanghai: Shanghai Jiao Tong University, 2015. (in Chinese)
    [20]
    WANG P G, ZHANG G L, ZHAO M, et al. Semi-analytical solutions for the wave-induced and vertical earthquake-induced responses of a fluid-stratified seabed-bedrock system[J]. Soil Dynamics and Earthquake Engineering, 2020, 139: 106391. doi: 10.1016/j.soildyn.2020.106391
    [21]
    王丕光. 地震和波浪作用下水–桥梁下部结构相互作用研究[D]. 北京: 北京工业大学, 2016.

    WANG Pi-guang. Study on Water-Substructure of Bridge Interaction under Earthquake Action and Wave Action[D]. Beijing: Beijing University of Technology, 2016. (in Chinese)
    [22]
    付鹏, 胡安峰, 李怡君, 等. 海洋高桩基础水平振动特性分析[J]. 振动与冲击, 2019, 38(17): 88–94. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917013.htm

    FU Peng, HU An-feng, LI Yi-jun, et al. Horizontal vibration characteristics of offshore elevated piles[J]. Journal of Vibration and Shock, 2019, 38(17): 88–94. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201917013.htm
    [23]
    郑长杰, 丁选明, 栾鲁宝. 黏弹性地基中管桩水平动力特性分析[J]. 岩土力学, 2017, 38(1): 26–32, 40. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701005.htm

    ZHENG Chang-jie, DING Xuan-ming, LUAN Lu-bao. Analysis of lateral dynamic response of pipe pile in viscoelastic soil layer[J]. Rock and Soil Mechanics, 2017, 38(1): 26–32, 40. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701005.htm
    [24]
    WANG P G, XU Y D, ZHANG X L, et al. A substructure method for seismic responses of offshore wind turbine considering nonlinear pile-soil dynamic interaction[J]. Soil Dynamics and Earthquake Engineering, 2021, 144: 106684.
    [25]
    WANG P G, ZHAO M, LI H F, et al. An accurate and efficient time-domain model for simulating water-cylinder dynamic interaction during earthquakes[J]. Engineering Structures, 2018, 166: 263–273.
  • Cited by

    Periodical cited type(2)

    1. 刘姝,李文杰,李莉佳,罗永江,陶瑞,李晓璇,杨亚会. 天然气水合物开采方法研究现状及展望. 钻探工程. 2024(05): 12-23 .
    2. 于倩男,唐慧敏,李承龙,梁爽,梁家修,陈志静,张琨. 天然气水合物注热分解渗流特征及数值模拟. 东北石油大学学报. 2023(06): 38-54+127-128 .

    Other cited types(0)

Catalog

    Article views (230) PDF downloads (308) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return