• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
MA Qin-yong, HUANG Kun, MA Dong-dong, YAO Zhao-ming, ZHOU Zhao-xi. True triaxial tests on frozen sandy soil under different intermediate principal stress coefficients and negative temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 870-878. DOI: 10.11779/CJGE202205010
Citation: MA Qin-yong, HUANG Kun, MA Dong-dong, YAO Zhao-ming, ZHOU Zhao-xi. True triaxial tests on frozen sandy soil under different intermediate principal stress coefficients and negative temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 870-878. DOI: 10.11779/CJGE202205010

True triaxial tests on frozen sandy soil under different intermediate principal stress coefficients and negative temperatures

More Information
  • Received Date: June 21, 2021
  • Available Online: September 22, 2022
  • To study the mechanical properties of frozen soil under complex stress paths, the effects of negative temperature and intermediate principal stress coefficient (bf) on the strength and deformation characteristics of frozen sandy soil are studied by using the self-developed true triaxial apparatus. The test results show that the stress-strain relationship under different bf values exhibits strain hardening characteristics under three dimensional stress states. The failure strength increases with bf increasing from 0 to 0.5 and then decreases when b is in the range of 0.5~1. However, the values are still greater than those under the axial-symmetric stress state (bf = 0). The strength increases linearly with the decline of the negative temperature. With the increase in bf, the deformation in the direction of the intermediate principal stress changes from dilative to compressive and that in the direction of the minor principal stress remains dilative throughout. All the volumetric strain curves demonstrate the characteristics of shear shrinkage first and then dilatancy. The test points in the range of 30%~95% stress level are suitable for calculating the Duncan-Chang model parameters.
  • [1]
    马芹永. 人工冻结法的理论与施工技术[M]. 北京: 人民交通出版社, 2007.

    MA Qin-yong. Theory and Construction Technology of Artificial Freezing Method[M]. Beijing: China Communications Press, 2007. (in Chinese)
    [2]
    马芹永. 冻土爆破性与可钻性试验及其应用[M]. 北京: 科学出版社, 2007.

    MA Qin-yong. Explosion and Drillability Test of Frozen Soil and its Application[M]. Beijing: Science Press, 2007. (in Chinese)
    [3]
    WANG F, LI G Y, MA W, et al. Pipeline-permafrost interaction monitoring system along the China-Russia crude oil pipeline[J]. Engineering Geology, 2019, 254: 113–125. doi: 10.1016/j.enggeo.2019.03.013
    [4]
    蔡汉成, 李勇, 杨永鹏, 等. 青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2016, 35(7): 1434–1444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607014.htm

    CAI Han-cheng, LI Yong, YANG Yong-peng, et al. Variation of temperature and permafrost along Qinghai—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1434–1444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607014.htm
    [5]
    李鑫, 刘恩龙, 侯丰. 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624–631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm

    LI Xin, LIU En-long, HOU Feng. A creep constitutive model for frozen soils considering the influence of temperature[J]. Rock and Soil Mechanics, 2019, 40(2): 624–631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm
    [6]
    孙义强, 孟上九, 王淼, 等. 负温和初始含水率对冻结粉质黏土力学性质的影响[J]. 应用基础与工程科学学报, 2021, 29(1): 193–205. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202101017.htm

    (SUN Yi-qiang, MENG Shang-jiu, WANG Miao, et al. Effects of negative temperature and initial moisture content on mechanical properties of frozen silty clay[J]. Journal of Basic Science and Engineering, 2021, 29(1): 193–205. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202101017.htm
    [7]
    齐吉琳, 马巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1): 133–143. doi: 10.3969/j.issn.1000-7598.2010.01.025

    QI Ji-lin, MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133–143. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.025
    [8]
    LI Q L, WANG M, FU Q, et al. Short-term influence of biochar on soil temperature, liquid moisture content and soybean growth in a seasonal frozen soil area[J]. Journal of Environmental Management, 2020, 266: 110609. doi: 10.1016/j.jenvman.2020.110609
    [9]
    MA Q Y, HUANG K, MA D D. Energy absorption characteristics and theoretical analysis of frozen clay with pre-existing cracks under uniaxial compressive impact load[J]. Cold Regions Science and Technology, 2021, 182: 103206. doi: 10.1016/j.coldregions.2020.103206
    [10]
    周国庆, 赵晓东, 李生生. 不同温度梯度两种应力路径冻结中砂应力–应变特性试验研究[J]. 岩土工程学报, 2010, 32(3): 338–343. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12418.shtml

    ZHOU Guo-qing, ZHAO Xiao-dong, LI Sheng-sheng. Stress-strain properties for the frozen media sand at different temperature gradients during two stress paths[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 338–343. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12418.shtml
    [11]
    陈敦, 马巍, 王大雁, 等. 定向剪切应力路径下冻结黏土变形特性试验[J]. 岩土力学, 2018, 39(7): 2483–2490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807020.htm

    CHEN Dun, MA Wei, WANG Da-yan, et al. Experimental study of deformation characteristics of frozen clay under directional shear stress path[J]. Rock and Soil Mechanics, 2018, 39(7): 2483–2490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807020.htm
    [12]
    YOSHIKAWA T, NODA T. Triaxial test on water absorption compression of unsaturated soil and its soil-water-air-coupled elastoplastic finite deformation analysis[J]. Soils and Foundations, 2020, 60(5): 1151–1170. doi: 10.1016/j.sandf.2020.06.010
    [13]
    FENG X T, GAO Y H, ZHANG X W, et al. Evolution of the mechanical and strength parameters of hard rocks in the true triaxial cyclic loading and unloading tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104349. doi: 10.1016/j.ijrmms.2020.104349
    [14]
    李滨, 刘瑞琦, 冯振, 等. Q3砂黄土真三轴强度变形特性研究[J]. 岩土力学, 2013(11): 3127–3133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311016.htm

    LI Bin, LIU Rui-qi, FENG Zhen, et al. Strength and deformation characteristics of Q3 sand loess under true triaxial condition[J]. Rock and Soil Mechanics, 2013(11): 3127–3133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311016.htm
    [15]
    潘家军, 程展林, 余挺, 等. 不同中主应力条件下粗粒土应力变形特性试验研究[J]. 岩土工程学报, 2016, 38(11): 2078–2084. doi: 10.11779/CJGE201611018

    PAN Jia-jun, CHENG Zhan-lin, YU Ting, et al. Experimental study on stress-strain characteristics of coarse-grained soil under different intermediate principal stresses[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2078–2084. (in Chinese) doi: 10.11779/CJGE201611018
    [16]
    张敏, 许成顺, 杜修力, 等. 中主应力系数及应力路径对砂土剪切特性影响的真三轴试验研究[J]. 水利学报, 2015, 46(9): 1072–1079. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201509008.htm

    ZHANG Min, XU Cheng-shun, DU Xiu-li, et al. True triaxial experimental research on shear behaviors of sand under different intermediate principal stresses and different stress paths[J]. Journal of Hydraulic Engineering, 2015, 46(9): 1072–1079. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201509008.htm
    [17]
    扈萍, 黄茂松, 马少坤, 等. 粉细砂的真三轴试验与强度特性[J]. 岩土力学, 2011, 32(2): 465–470. doi: 10.3969/j.issn.1000-7598.2011.02.024

    HU Ping, HUANG Mao-song, MA Shao-kun, et al. True triaxial tests and strength characteristics of silty sand[J]. Rock and Soil Mechanics, 2011, 32(2): 465–470. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.02.024
    [18]
    刘俊新, 刘育田. 西南红层泥岩压实粉碎粘土的真三轴试验研究[J]. 浙江工业大学学报, 2015, 43(3): 283–287, 301. doi: 10.3969/j.issn.1006-4303.2015.03.011

    LIU Jun-xin, LIU Yu-tian. Experimental research on crushed compacted clay from southwest red layers mudstone with true tri-axial apparatus[J]. Journal of Zhejiang University of Technology, 2015, 43(3): 283–287, 301. (in Chinese) doi: 10.3969/j.issn.1006-4303.2015.03.011
    [19]
    姜景山, 左永振, 程展林, 等. 应力状态对粗粒料力学特性影响的大型真三轴试验[J]. 岩土力学, 2020, 41(11): 3563–3572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011007.htm

    JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, et al. Effects of stress state on mechanical properties of coarse granular material using large-scale true triaxial tests[J]. Rock and Soil Mechanics, 2020, 41(11): 3563–3572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011007.htm
    [20]
    施维成, 朱俊高, 刘汉龙. 中主应力对砾石料变形和强度的影响[J]. 岩土工程学报, 2008, 30(10): 1449–1453. doi: 10.3321/j.issn:1000-4548.2008.10.005

    SHI Wei-cheng, ZHU Jun-gao, LIU Han-long. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449–1453. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.005
    [21]
    陈敦, 马巍, 穆彦虎, 等. π平面上冻结黏土破坏函数适用性试验研究[J]. 中国矿业大学学报, 2019, 48(1): 64–70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901008.htm

    CHEN Dun, MA Wei, MU Yan-hu, et al. Experimental study of the failure function of frozen clay in the π-plane[J]. Journal of China University of Mining & Technology, 2019, 48(1): 64–70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901008.htm
    [22]
    雷乐乐, 王大雁, 王永涛, 等. 定向剪切应力路径下冻结黏土强度特性试验[J]. 哈尔滨工业大学学报, 2018, 50(6): 103–109. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806015.htm

    LEI Le-le, WANG Da-yan, WANG Yong-tao, et al. The strength characteristics of frozen clay under the different principal stress directions[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 103–109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806015.htm
    [23]
    麻世垄, 姚兆明, 刘爽, 等. 中主应力系数影响下的冻结砂土损伤本构模型[J]. 煤田地质与勘探, 2020, 48(5): 130–136. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005016.htm

    MA Shi-long, YAO Zhao-ming, LIU Shuang, et al. Damaged constitutive model of frozen sand under the influence of intermediate principal stress[J]. Coal Geology & Exploration, 2020, 48(5): 130–136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005016.htm
    [24]
    KONG R, FENG X T, ZHANG X W, et al. Study on crack initiation and damage stress in sandstone under true triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 117–123. doi: 10.1016/j.ijrmms.2018.04.019
    [25]
    陶振宇, 高延法. 红砂岩真三轴压力试验与岩石强度极限统计[J]. 武汉水利电力大学学报, 1993, 26(4): 300–305. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199304004.htm

    TAO Zhen-yu, GAO Yan-fa. True triaxial pressure experiment for red sand rock and limit statistics of rock strength[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1993, 26(4): 300–305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199304004.htm
    [26]
    张晋勋, 杨昊, 单仁亮, 等. 冻结饱水砂卵石三轴压缩强度试验研究[J]. 岩土力学, 2018, 39(11): 3993–4000, 4016. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811011.htm

    ZHANG Jin-xun, YANG Hao, SHAN Ren-liang, et al. Experimental research on triaxial compressive strength of frozen saturated sandy gravel[J]. Rock and Soil Mechanics, 2018, 39(11): 3993–4000, 4016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811011.htm
    [27]
    黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346–1352. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm

    HUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346–1352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm
    [28]
    宋东, 余梁蜀, 王晓奇, 等. 低温沥青混凝土邓肯-张模型参数整理方法[J]. 水资源与水工程学报, 2017, 28(1): 230–235. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201701041.htm

    SONG Dong, YU Liang-shu, WANG Xiao-qi, et al. Collection method of Duncan-Chang model parameters for low temperature asphalt concrete[J]. Journal of Water Resources and Water Engineering, 2017, 28(1): 230–235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201701041.htm
    [29]
    冯卫星, 常绍东, 胡万毅. 北京细砂土邓肯-张模型参数试验研究[J]. 岩石力学与工程学报, 1999, 18(3): 327–330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199903021.htm

    FENG Wei-xing, CHANG Shao-dong, HU Wan-yi. Experimental study on parameters of duncan-chang model for beijing fine sandy soil[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3): 327–330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199903021.htm
  • Related Articles

    [1]AN Ran, KONG Ling-wei, ZHANG Xian-wei. Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017
    [2]ZHANG Zhen-ying, GUO Wen-qiang, ZHANG Yu-xiang, WU Da-zhi, XU Hui, LIU Kai-fu, CHEN Ping. Shear strength behavior of mechanically-biologically treated waste in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1345-1353. DOI: 10.11779/CJGE201907020
    [3]LIU Jun-ding, LI Rong-jian, SUN Ping, WANG Zhi-jun, LUO Jian-wen, LI Zhen-fei. Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 124-128. DOI: 10.11779/CJGE2018S1020
    [4]ZHU Jian-feng, XU Ri-qing. Secondary development of modified Duncan-Chang model considering disturbance[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 84-88. DOI: 10.11779/CJGE2015S1017
    [5]CAO Wen-gui, DENG Xiang-jun, ZHANG Chao. Layerwise summation method for ground foundation settlement based on Duncan-Chang constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 643-649.
    [6]WANG Jian, CEN Wei-jun, ZHANG Yu. Non-uniqueness of back-analyzed parameters of Ducan-Chang model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1054-1057.
    [7]HE Chunbao, SHEN Jianhua, CAI Jian, CHEN Cunen. Back analysis of Duncan-Chang nonlinear foundation model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 634-638.
    [8]ZHOU Xiaoyi, DENG Anfu. Numerical manifold method of nonlinear analysis for rock and soil mass[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 298-302.
    [9]YIN Deshun, WANG Baotian, WANG Yuntao. Tangent elastic modulus of Duncan-Chang model for different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1380-1385.
    [10]HE Changrong, YANG Guifang. Effects of parameters of Duncan-Chang model on calculated results[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 170-174.
  • Cited by

    Periodical cited type(6)

    1. 马芹永,张鸿朋,黄坤,马冬冬,姚兆明,吴飞. 不同小主应力和负温条件下冻结粉质黏土平面应变试验研究. 岩石力学与工程学报. 2024(03): 768-780 .
    2. 郎瑞卿,裴璐熹,孙立强,冯守中. 软黏土带压冻融循环下不固结力学特性试验研究. 岩土工程学报. 2024(S2): 43-48 . 本站查看
    3. 王泽驰,邵帅,魏军政,邵生俊,沈晓钧,吴昊. 考虑中主应力变化的原状黄土变形特性研究. 岩土力学. 2023(03): 854-860 .
    4. 张鸿朋,马芹永,黄坤,马冬冬,姚兆明,张发. 冻结砂不同应力路径三轴试验强度和变形分析. 岩土力学. 2023(05): 1477-1486+1500 .
    5. 刘勤龙,李旭,姚兆明,吴永康,蔡德钩. 冻土强度特性及其主控因素综述. 冰川冻土. 2023(03): 1092-1104 .
    6. 屈俊童,郭颖杰,浦钧翔,刘关栋. 冻结滇池泥炭质土剪切力学特性影响试验及其本构关系. 低温工程. 2023(06): 63-70+81 .

    Other cited types(9)

Catalog

    Article views (162) PDF downloads (132) Cited by(15)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return