Citation: | MA Qin-yong, HUANG Kun, MA Dong-dong, YAO Zhao-ming, ZHOU Zhao-xi. True triaxial tests on frozen sandy soil under different intermediate principal stress coefficients and negative temperatures[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 870-878. DOI: 10.11779/CJGE202205010 |
[1] |
马芹永. 人工冻结法的理论与施工技术[M]. 北京: 人民交通出版社, 2007.
MA Qin-yong. Theory and Construction Technology of Artificial Freezing Method[M]. Beijing: China Communications Press, 2007. (in Chinese)
|
[2] |
马芹永. 冻土爆破性与可钻性试验及其应用[M]. 北京: 科学出版社, 2007.
MA Qin-yong. Explosion and Drillability Test of Frozen Soil and its Application[M]. Beijing: Science Press, 2007. (in Chinese)
|
[3] |
WANG F, LI G Y, MA W, et al. Pipeline-permafrost interaction monitoring system along the China-Russia crude oil pipeline[J]. Engineering Geology, 2019, 254: 113–125. doi: 10.1016/j.enggeo.2019.03.013
|
[4] |
蔡汉成, 李勇, 杨永鹏, 等. 青藏铁路沿线多年冻土区气温和多年冻土变化特征[J]. 岩石力学与工程学报, 2016, 35(7): 1434–1444. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607014.htm
CAI Han-cheng, LI Yong, YANG Yong-peng, et al. Variation of temperature and permafrost along Qinghai—Tibet railway[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(7): 1434–1444. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201607014.htm
|
[5] |
李鑫, 刘恩龙, 侯丰. 考虑温度影响的冻土蠕变本构模型[J]. 岩土力学, 2019, 40(2): 624–631. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm
LI Xin, LIU En-long, HOU Feng. A creep constitutive model for frozen soils considering the influence of temperature[J]. Rock and Soil Mechanics, 2019, 40(2): 624–631. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201902024.htm
|
[6] |
孙义强, 孟上九, 王淼, 等. 负温和初始含水率对冻结粉质黏土力学性质的影响[J]. 应用基础与工程科学学报, 2021, 29(1): 193–205. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202101017.htm
(SUN Yi-qiang, MENG Shang-jiu, WANG Miao, et al. Effects of negative temperature and initial moisture content on mechanical properties of frozen silty clay[J]. Journal of Basic Science and Engineering, 2021, 29(1): 193–205. https://www.cnki.com.cn/Article/CJFDTOTAL-YJGX202101017.htm
|
[7] |
齐吉琳, 马巍. 冻土的力学性质及研究现状[J]. 岩土力学, 2010, 31(1): 133–143. doi: 10.3969/j.issn.1000-7598.2010.01.025
QI Ji-lin, MA Wei. State-of-art of research on mechanical properties of frozen soils[J]. Rock and Soil Mechanics, 2010, 31(1): 133–143. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.025
|
[8] |
LI Q L, WANG M, FU Q, et al. Short-term influence of biochar on soil temperature, liquid moisture content and soybean growth in a seasonal frozen soil area[J]. Journal of Environmental Management, 2020, 266: 110609. doi: 10.1016/j.jenvman.2020.110609
|
[9] |
MA Q Y, HUANG K, MA D D. Energy absorption characteristics and theoretical analysis of frozen clay with pre-existing cracks under uniaxial compressive impact load[J]. Cold Regions Science and Technology, 2021, 182: 103206. doi: 10.1016/j.coldregions.2020.103206
|
[10] |
周国庆, 赵晓东, 李生生. 不同温度梯度两种应力路径冻结中砂应力–应变特性试验研究[J]. 岩土工程学报, 2010, 32(3): 338–343. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12418.shtml
ZHOU Guo-qing, ZHAO Xiao-dong, LI Sheng-sheng. Stress-strain properties for the frozen media sand at different temperature gradients during two stress paths[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(3): 338–343. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12418.shtml
|
[11] |
陈敦, 马巍, 王大雁, 等. 定向剪切应力路径下冻结黏土变形特性试验[J]. 岩土力学, 2018, 39(7): 2483–2490. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807020.htm
CHEN Dun, MA Wei, WANG Da-yan, et al. Experimental study of deformation characteristics of frozen clay under directional shear stress path[J]. Rock and Soil Mechanics, 2018, 39(7): 2483–2490. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807020.htm
|
[12] |
YOSHIKAWA T, NODA T. Triaxial test on water absorption compression of unsaturated soil and its soil-water-air-coupled elastoplastic finite deformation analysis[J]. Soils and Foundations, 2020, 60(5): 1151–1170. doi: 10.1016/j.sandf.2020.06.010
|
[13] |
FENG X T, GAO Y H, ZHANG X W, et al. Evolution of the mechanical and strength parameters of hard rocks in the true triaxial cyclic loading and unloading tests[J]. International Journal of Rock Mechanics and Mining Sciences, 2020, 131: 104349. doi: 10.1016/j.ijrmms.2020.104349
|
[14] |
李滨, 刘瑞琦, 冯振, 等. Q3砂黄土真三轴强度变形特性研究[J]. 岩土力学, 2013(11): 3127–3133. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311016.htm
LI Bin, LIU Rui-qi, FENG Zhen, et al. Strength and deformation characteristics of Q3 sand loess under true triaxial condition[J]. Rock and Soil Mechanics, 2013(11): 3127–3133. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201311016.htm
|
[15] |
潘家军, 程展林, 余挺, 等. 不同中主应力条件下粗粒土应力变形特性试验研究[J]. 岩土工程学报, 2016, 38(11): 2078–2084. doi: 10.11779/CJGE201611018
PAN Jia-jun, CHENG Zhan-lin, YU Ting, et al. Experimental study on stress-strain characteristics of coarse-grained soil under different intermediate principal stresses[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(11): 2078–2084. (in Chinese) doi: 10.11779/CJGE201611018
|
[16] |
张敏, 许成顺, 杜修力, 等. 中主应力系数及应力路径对砂土剪切特性影响的真三轴试验研究[J]. 水利学报, 2015, 46(9): 1072–1079. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201509008.htm
ZHANG Min, XU Cheng-shun, DU Xiu-li, et al. True triaxial experimental research on shear behaviors of sand under different intermediate principal stresses and different stress paths[J]. Journal of Hydraulic Engineering, 2015, 46(9): 1072–1079. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201509008.htm
|
[17] |
扈萍, 黄茂松, 马少坤, 等. 粉细砂的真三轴试验与强度特性[J]. 岩土力学, 2011, 32(2): 465–470. doi: 10.3969/j.issn.1000-7598.2011.02.024
HU Ping, HUANG Mao-song, MA Shao-kun, et al. True triaxial tests and strength characteristics of silty sand[J]. Rock and Soil Mechanics, 2011, 32(2): 465–470. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.02.024
|
[18] |
刘俊新, 刘育田. 西南红层泥岩压实粉碎粘土的真三轴试验研究[J]. 浙江工业大学学报, 2015, 43(3): 283–287, 301. doi: 10.3969/j.issn.1006-4303.2015.03.011
LIU Jun-xin, LIU Yu-tian. Experimental research on crushed compacted clay from southwest red layers mudstone with true tri-axial apparatus[J]. Journal of Zhejiang University of Technology, 2015, 43(3): 283–287, 301. (in Chinese) doi: 10.3969/j.issn.1006-4303.2015.03.011
|
[19] |
姜景山, 左永振, 程展林, 等. 应力状态对粗粒料力学特性影响的大型真三轴试验[J]. 岩土力学, 2020, 41(11): 3563–3572. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011007.htm
JIANG Jing-shan, ZUO Yong-zhen, CHENG Zhan-lin, et al. Effects of stress state on mechanical properties of coarse granular material using large-scale true triaxial tests[J]. Rock and Soil Mechanics, 2020, 41(11): 3563–3572. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202011007.htm
|
[20] |
施维成, 朱俊高, 刘汉龙. 中主应力对砾石料变形和强度的影响[J]. 岩土工程学报, 2008, 30(10): 1449–1453. doi: 10.3321/j.issn:1000-4548.2008.10.005
SHI Wei-cheng, ZHU Jun-gao, LIU Han-long. Influence of intermediate principal stress on deformation and strength of gravel[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(10): 1449–1453. (in Chinese) doi: 10.3321/j.issn:1000-4548.2008.10.005
|
[21] |
陈敦, 马巍, 穆彦虎, 等. π平面上冻结黏土破坏函数适用性试验研究[J]. 中国矿业大学学报, 2019, 48(1): 64–70. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901008.htm
CHEN Dun, MA Wei, MU Yan-hu, et al. Experimental study of the failure function of frozen clay in the π-plane[J]. Journal of China University of Mining & Technology, 2019, 48(1): 64–70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201901008.htm
|
[22] |
雷乐乐, 王大雁, 王永涛, 等. 定向剪切应力路径下冻结黏土强度特性试验[J]. 哈尔滨工业大学学报, 2018, 50(6): 103–109. https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806015.htm
LEI Le-le, WANG Da-yan, WANG Yong-tao, et al. The strength characteristics of frozen clay under the different principal stress directions[J]. Journal of Harbin Institute of Technology, 2018, 50(6): 103–109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HEBX201806015.htm
|
[23] |
麻世垄, 姚兆明, 刘爽, 等. 中主应力系数影响下的冻结砂土损伤本构模型[J]. 煤田地质与勘探, 2020, 48(5): 130–136. https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005016.htm
MA Shi-long, YAO Zhao-ming, LIU Shuang, et al. Damaged constitutive model of frozen sand under the influence of intermediate principal stress[J]. Coal Geology & Exploration, 2020, 48(5): 130–136. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MDKT202005016.htm
|
[24] |
KONG R, FENG X T, ZHANG X W, et al. Study on crack initiation and damage stress in sandstone under true triaxial compression[J]. International Journal of Rock Mechanics and Mining Sciences, 2018, 106: 117–123. doi: 10.1016/j.ijrmms.2018.04.019
|
[25] |
陶振宇, 高延法. 红砂岩真三轴压力试验与岩石强度极限统计[J]. 武汉水利电力大学学报, 1993, 26(4): 300–305. https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199304004.htm
TAO Zhen-yu, GAO Yan-fa. True triaxial pressure experiment for red sand rock and limit statistics of rock strength[J]. Journal of Wuhan University of Hydraulic and Electric Engineering, 1993, 26(4): 300–305. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-WSDD199304004.htm
|
[26] |
张晋勋, 杨昊, 单仁亮, 等. 冻结饱水砂卵石三轴压缩强度试验研究[J]. 岩土力学, 2018, 39(11): 3993–4000, 4016. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811011.htm
ZHANG Jin-xun, YANG Hao, SHAN Ren-liang, et al. Experimental research on triaxial compressive strength of frozen saturated sandy gravel[J]. Rock and Soil Mechanics, 2018, 39(11): 3993–4000, 4016. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811011.htm
|
[27] |
黄星, 李东庆, 明锋, 等. 冻土的单轴抗压、抗拉强度特性试验研究[J]. 冰川冻土, 2016, 38(5): 1346–1352. https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm
HUANG Xing, LI Dong-qing, MING Feng, et al. Experimental study of the compressive and tensile strengths of artificial frozen soil[J]. Journal of Glaciology and Geocryology, 2016, 38(5): 1346–1352. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BCDT201605020.htm
|
[28] |
宋东, 余梁蜀, 王晓奇, 等. 低温沥青混凝土邓肯-张模型参数整理方法[J]. 水资源与水工程学报, 2017, 28(1): 230–235. https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201701041.htm
SONG Dong, YU Liang-shu, WANG Xiao-qi, et al. Collection method of Duncan-Chang model parameters for low temperature asphalt concrete[J]. Journal of Water Resources and Water Engineering, 2017, 28(1): 230–235. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XBSZ201701041.htm
|
[29] |
冯卫星, 常绍东, 胡万毅. 北京细砂土邓肯-张模型参数试验研究[J]. 岩石力学与工程学报, 1999, 18(3): 327–330. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199903021.htm
FENG Wei-xing, CHANG Shao-dong, HU Wan-yi. Experimental study on parameters of duncan-chang model for beijing fine sandy soil[J]. Chinese Journal of Rock Mechanics and Engineering, 1999, 18(3): 327–330. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX199903021.htm
|
[1] | AN Ran, KONG Ling-wei, ZHANG Xian-wei. Mechanical properties and generalized Duncan-Chang model for granite residual soils using borehole shear tests[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(9): 1723-1732. DOI: 10.11779/CJGE202009017 |
[2] | ZHANG Zhen-ying, GUO Wen-qiang, ZHANG Yu-xiang, WU Da-zhi, XU Hui, LIU Kai-fu, CHEN Ping. Shear strength behavior of mechanically-biologically treated waste in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1345-1353. DOI: 10.11779/CJGE201907020 |
[3] | LIU Jun-ding, LI Rong-jian, SUN Ping, WANG Zhi-jun, LUO Jian-wen, LI Zhen-fei. Duncan-Chang nonlinear constitutive model based on joint strength theory of structural loess[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(S1): 124-128. DOI: 10.11779/CJGE2018S1020 |
[4] | ZHU Jian-feng, XU Ri-qing. Secondary development of modified Duncan-Chang model considering disturbance[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(zk1): 84-88. DOI: 10.11779/CJGE2015S1017 |
[5] | CAO Wen-gui, DENG Xiang-jun, ZHANG Chao. Layerwise summation method for ground foundation settlement based on Duncan-Chang constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(4): 643-649. |
[6] | WANG Jian, CEN Wei-jun, ZHANG Yu. Non-uniqueness of back-analyzed parameters of Ducan-Chang model[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(7): 1054-1057. |
[7] | HE Chunbao, SHEN Jianhua, CAI Jian, CHEN Cunen. Back analysis of Duncan-Chang nonlinear foundation model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4): 634-638. |
[8] | ZHOU Xiaoyi, DENG Anfu. Numerical manifold method of nonlinear analysis for rock and soil mass[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(2): 298-302. |
[9] | YIN Deshun, WANG Baotian, WANG Yuntao. Tangent elastic modulus of Duncan-Chang model for different stress paths[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(9): 1380-1385. |
[10] | HE Changrong, YANG Guifang. Effects of parameters of Duncan-Chang model on calculated results[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 170-174. |
1. |
马芹永,张鸿朋,黄坤,马冬冬,姚兆明,吴飞. 不同小主应力和负温条件下冻结粉质黏土平面应变试验研究. 岩石力学与工程学报. 2024(03): 768-780 .
![]() | |
2. |
郎瑞卿,裴璐熹,孙立强,冯守中. 软黏土带压冻融循环下不固结力学特性试验研究. 岩土工程学报. 2024(S2): 43-48 .
![]() | |
3. |
王泽驰,邵帅,魏军政,邵生俊,沈晓钧,吴昊. 考虑中主应力变化的原状黄土变形特性研究. 岩土力学. 2023(03): 854-860 .
![]() | |
4. |
张鸿朋,马芹永,黄坤,马冬冬,姚兆明,张发. 冻结砂不同应力路径三轴试验强度和变形分析. 岩土力学. 2023(05): 1477-1486+1500 .
![]() | |
5. |
刘勤龙,李旭,姚兆明,吴永康,蔡德钩. 冻土强度特性及其主控因素综述. 冰川冻土. 2023(03): 1092-1104 .
![]() | |
6. |
屈俊童,郭颖杰,浦钧翔,刘关栋. 冻结滇池泥炭质土剪切力学特性影响试验及其本构关系. 低温工程. 2023(06): 63-70+81 .
![]() |