• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LI Meng-zi, CAI Guo-qing, ZHAO Cheng-gang. Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 851-860. DOI: 10.11779/CJGE202205008
Citation: LI Meng-zi, CAI Guo-qing, ZHAO Cheng-gang. Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 851-860. DOI: 10.11779/CJGE202205008

Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule

More Information
  • Received Date: May 24, 2021
  • Available Online: September 22, 2022
  • A new anisotropic constitutive model is proposed based on the critical state theory and the rotational hardening rule. Firstly, an expression for yield surfaces is developed by employing the non-linear logarithmic function capable of describing volumetric deformation characteristics of anisotropic soils in a wide variety based on the results of the constant stress ratio loading tests. The shape of yield surfaces can be controlled by the introduced parameter n. The yield surface is elliptical for n=1, bullet for n < 1 and teardrop for n > 1. Then, the expression for the boundary value with rotational hardening rule under the virgin constant stress ratio loading is proposed. Under isotropic loading and critical conditions, the value of the expression reaches zero eventually. The model can be degenerated to the modified Cam-clay (MCC) when n=1 and the rotation of the yield surface is not considered. Finally, the explicit modified Euler method with automatic error control is used to numeralize the model, and the model is verified by the constant stress ratio loading tests, variable stress path tests, drained triaxial compression tests, undrained triaxial compression tests and undrained triaxial extension tests. The results show that the proposed anisotropic constitutive model can accurately describe the volume deformation, shear and strength characteristics of clays under a series of stress paths.
  • [1]
    尹振宇. 土体微观力学解析模型: 进展及发展[J]. 岩土工程学报, 2013, 35(6): 993–1009. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15068.shtml

    YIN Zhen-yu. Micromechanics-based analytical model for soils: review and development[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 993–1009. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15068.shtml
    [2]
    张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展[J]. 岩土力学, 2004, 25(9): 1503–1509. doi: 10.3969/j.issn.1000-7598.2004.09.033

    ZHANG Kun-yong, YIN Zong-ze, MEI Guo-xiong. Development of soil's anisotropy study[J]. Rock and Soil Mechanics, 2004, 25(9): 1503–1509. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.033
    [3]
    WHEELER S J, NÄÄTÄNEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40(2): 403–418. doi: 10.1139/t02-119
    [4]
    DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341–347. doi: 10.1016/0093-6413(86)90047-9
    [5]
    DAFALIAS Y F, TAIEBAT M. Anatomy of rotational hardening in clay plasticity[J]. Géotechnique, 2013, 63(16): 1406–1418. doi: 10.1680/geot.12.P.197
    [6]
    PESTANA J M, WHITTLE A J. Formulation of a unified constitutive model for clays and sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1215–1243. doi: 10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
    [7]
    YANG C, LIU X L, LIU X F, et al. Constitutive modelling of Otaniemi soft clay in both natural and reconstituted states[J]. Computers and Geotechnics, 2015, 70: 83–95. doi: 10.1016/j.compgeo.2015.07.018
    [8]
    李海潮, 童晨曦, 马博, 等. 基于双参数屈服函数的黏土和砂土非正交单屈服面模型[J]. 岩石力学与工程学报, 2020, 39(11): 2319–2327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm

    LI Hai-chao, TONG Chen-xi, MA Bo, et al. A non-orthogonal single yield surface model for clays and sands based on a two-parameter yield function[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2319–2327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm
    [9]
    陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 547–553. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16865.shtml

    CHEN Yan-ni, YANG Zhong-xuan. Thermodynamics-based bounding surface model for overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547–553. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16865.shtml
    [10]
    CHEN Y N, YANG Z X. A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays[J]. Computers and Geotechnics, 2017, 90: 133–143. doi: 10.1016/j.compgeo.2017.06.007
    [11]
    LAGIOIA R, PUZRIN A M, POTTS D M. A new versatile expression for yield and plastic potential surfaces[J]. Computers and Geotechnics, 1996, 19(3): 171–191. doi: 10.1016/0266-352X(96)00005-5
    [12]
    NEWSON T A, DAVIES M C R. A rotational hardening constitutive model for anisotropically consolidated clay[J]. Soils and Foundations, 1996, 36(3): 13–20. doi: 10.3208/sandf.36.3_13
    [13]
    DAFALIAS Y F, MANZARI M T, PAPADIMITRIOU A G. SANICLAY: simple anisotropic clay plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1231–1257. doi: 10.1002/nag.524
    [14]
    DAFALIAS Y F, TAIEBAT M. Rotational hardening with and without anisotropic fabric at critical state[J]. Géotechnique, 2014, 64(6): 507–511. doi: 10.1680/geot.13.T.035
    [15]
    YANG C, SHENG D C, CARTER J P, et al. Modelling the plastic anisotropy of lower Cromer till[J]. Computers and Geotechnics, 2015, 69: 22–37. doi: 10.1016/j.compgeo.2015.04.013
    [16]
    LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263–275. doi: 10.1061/(ASCE)EM.1943-7889.0000324
    [17]
    ZHAO J, GUO N. Unique critical state characteristics in granular media considering fabric anisotropy[J]. Géotechnique, 2013, 63(8): 695–704. doi: 10.1680/geot.12.P.040
    [18]
    FU P C, DAFALIAS Y F. Fabric evolution within shear bands of granular materials and its relation to critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(18): 1918–1948. doi: 10.1002/nag.988
    [19]
    YILDIZ A, KARSTUNEN M, KRENN H. Effect of anisotropy and destructuration on behavior of Haarajoki test embankment[J]. International Journal of Geomechanics, 2009, 9(4): 153–168. doi: 10.1061/(ASCE)1532-3641(2009)9:4(153)
    [20]
    OHNO S, IIZUKA A, OHTA H. Two categories of new constitutive model derived from non-linear description of soil contractancy[J]. Journal of Applied Mechanics, 2006, 9: 407–414. doi: 10.2208/journalam.9.407
    [21]
    SIVASITHAMPARAM N, CASTRO J. An anisotropic elastoplastic model for soft clays based on logarithmic contractancy[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 596–621. doi: 10.1002/nag.2418
    [22]
    LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467–488. doi: 10.1680/geot.1990.40.3.467
    [23]
    BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329–378. doi: 10.1680/geot.1990.40.3.329
    [24]
    DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003
    [25]
    CHEN Y N, YANG Z X. A bounding surface model for anisotropically overconsolidated clay incorporating thermodynamics admissible rotational hardening rule[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(5): 668–690. doi: 10.1002/nag.3032
    [26]
    SLOAN S W, ABBO A J, SHENG D C. Refined explicit integration of elastoplastic models with automatic error control[J]. Engineering Computations, 2001, 18(1/2): 121–194. doi: 10.1108/02644400110365842
    [27]
    GENS A. Stress-strain and Strength of A Low Plasticity Clay[D]. London: University of London, 1982.
    [28]
    STIPHO A S. Theoretical and Experimental Investigation of the Behavior of Anisotropically Consolidated Kaolin[D]. Wales: Cardiff University, 1978.
  • Cited by

    Periodical cited type(1)

    1. 孟祥传,刘润,梁超,侯科宇,孙若晗. 饱和黏土不排水抗剪强度特性研究. 土木工程学报. 2024(05): 86-98 .

    Other cited types(4)

Catalog

    Article views (216) PDF downloads (125) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return