Citation: | LI Meng-zi, CAI Guo-qing, ZHAO Cheng-gang. Anisotropic elastoplastic model for clays with improved yield surfaces and rotational hardening rule[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(5): 851-860. DOI: 10.11779/CJGE202205008 |
[1] |
尹振宇. 土体微观力学解析模型: 进展及发展[J]. 岩土工程学报, 2013, 35(6): 993–1009. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15068.shtml
YIN Zhen-yu. Micromechanics-based analytical model for soils: review and development[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6): 993–1009. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15068.shtml
|
[2] |
张坤勇, 殷宗泽, 梅国雄. 土体各向异性研究进展[J]. 岩土力学, 2004, 25(9): 1503–1509. doi: 10.3969/j.issn.1000-7598.2004.09.033
ZHANG Kun-yong, YIN Zong-ze, MEI Guo-xiong. Development of soil's anisotropy study[J]. Rock and Soil Mechanics, 2004, 25(9): 1503–1509. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.09.033
|
[3] |
WHEELER S J, NÄÄTÄNEN A, KARSTUNEN M, et al. An anisotropic elastoplastic model for soft clays[J]. Canadian Geotechnical Journal, 2003, 40(2): 403–418. doi: 10.1139/t02-119
|
[4] |
DAFALIAS Y F. An anisotropic critical state soil plasticity model[J]. Mechanics Research Communications, 1986, 13(6): 341–347. doi: 10.1016/0093-6413(86)90047-9
|
[5] |
DAFALIAS Y F, TAIEBAT M. Anatomy of rotational hardening in clay plasticity[J]. Géotechnique, 2013, 63(16): 1406–1418. doi: 10.1680/geot.12.P.197
|
[6] |
PESTANA J M, WHITTLE A J. Formulation of a unified constitutive model for clays and sands[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 1999, 23(12): 1215–1243. doi: 10.1002/(SICI)1096-9853(199910)23:12<1215::AID-NAG29>3.0.CO;2-F
|
[7] |
YANG C, LIU X L, LIU X F, et al. Constitutive modelling of Otaniemi soft clay in both natural and reconstituted states[J]. Computers and Geotechnics, 2015, 70: 83–95. doi: 10.1016/j.compgeo.2015.07.018
|
[8] |
李海潮, 童晨曦, 马博, 等. 基于双参数屈服函数的黏土和砂土非正交单屈服面模型[J]. 岩石力学与工程学报, 2020, 39(11): 2319–2327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm
LI Hai-chao, TONG Chen-xi, MA Bo, et al. A non-orthogonal single yield surface model for clays and sands based on a two-parameter yield function[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2319–2327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm
|
[9] |
陈艳妮, 杨仲轩. 基于热力学理论的超固结黏土边界面模型[J]. 岩土工程学报, 2017, 39(3): 547–553. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16865.shtml
CHEN Yan-ni, YANG Zhong-xuan. Thermodynamics-based bounding surface model for overconsolidated clay[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(3): 547–553. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16865.shtml
|
[10] |
CHEN Y N, YANG Z X. A family of improved yield surfaces and their application in modeling of isotropically over-consolidated clays[J]. Computers and Geotechnics, 2017, 90: 133–143. doi: 10.1016/j.compgeo.2017.06.007
|
[11] |
LAGIOIA R, PUZRIN A M, POTTS D M. A new versatile expression for yield and plastic potential surfaces[J]. Computers and Geotechnics, 1996, 19(3): 171–191. doi: 10.1016/0266-352X(96)00005-5
|
[12] |
NEWSON T A, DAVIES M C R. A rotational hardening constitutive model for anisotropically consolidated clay[J]. Soils and Foundations, 1996, 36(3): 13–20. doi: 10.3208/sandf.36.3_13
|
[13] |
DAFALIAS Y F, MANZARI M T, PAPADIMITRIOU A G. SANICLAY: simple anisotropic clay plasticity model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(12): 1231–1257. doi: 10.1002/nag.524
|
[14] |
DAFALIAS Y F, TAIEBAT M. Rotational hardening with and without anisotropic fabric at critical state[J]. Géotechnique, 2014, 64(6): 507–511. doi: 10.1680/geot.13.T.035
|
[15] |
YANG C, SHENG D C, CARTER J P, et al. Modelling the plastic anisotropy of lower Cromer till[J]. Computers and Geotechnics, 2015, 69: 22–37. doi: 10.1016/j.compgeo.2015.04.013
|
[16] |
LI X S, DAFALIAS Y F. Anisotropic critical state theory: role of fabric[J]. Journal of Engineering Mechanics, 2012, 138(3): 263–275. doi: 10.1061/(ASCE)EM.1943-7889.0000324
|
[17] |
ZHAO J, GUO N. Unique critical state characteristics in granular media considering fabric anisotropy[J]. Géotechnique, 2013, 63(8): 695–704. doi: 10.1680/geot.12.P.040
|
[18] |
FU P C, DAFALIAS Y F. Fabric evolution within shear bands of granular materials and its relation to critical state theory[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2011, 35(18): 1918–1948. doi: 10.1002/nag.988
|
[19] |
YILDIZ A, KARSTUNEN M, KRENN H. Effect of anisotropy and destructuration on behavior of Haarajoki test embankment[J]. International Journal of Geomechanics, 2009, 9(4): 153–168. doi: 10.1061/(ASCE)1532-3641(2009)9:4(153)
|
[20] |
OHNO S, IIZUKA A, OHTA H. Two categories of new constitutive model derived from non-linear description of soil contractancy[J]. Journal of Applied Mechanics, 2006, 9: 407–414. doi: 10.2208/journalam.9.407
|
[21] |
SIVASITHAMPARAM N, CASTRO J. An anisotropic elastoplastic model for soft clays based on logarithmic contractancy[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2016, 40(4): 596–621. doi: 10.1002/nag.2418
|
[22] |
LEROUEIL S, VAUGHAN P R. The general and congruent effects of structure in natural soils and weak rocks[J]. Géotechnique, 1990, 40(3): 467–488. doi: 10.1680/geot.1990.40.3.467
|
[23] |
BURLAND J B. On the compressibility and shear strength of natural clays[J]. Géotechnique, 1990, 40(3): 329–378. doi: 10.1680/geot.1990.40.3.329
|
[24] |
DELAGE P, LEFEBVRE G. Study of the structure of a sensitive Champlain clay and of its evolution during consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21–35. doi: 10.1139/t84-003
|
[25] |
CHEN Y N, YANG Z X. A bounding surface model for anisotropically overconsolidated clay incorporating thermodynamics admissible rotational hardening rule[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(5): 668–690. doi: 10.1002/nag.3032
|
[26] |
SLOAN S W, ABBO A J, SHENG D C. Refined explicit integration of elastoplastic models with automatic error control[J]. Engineering Computations, 2001, 18(1/2): 121–194. doi: 10.1108/02644400110365842
|
[27] |
GENS A. Stress-strain and Strength of A Low Plasticity Clay[D]. London: University of London, 1982.
|
[28] |
STIPHO A S. Theoretical and Experimental Investigation of the Behavior of Anisotropically Consolidated Kaolin[D]. Wales: Cardiff University, 1978.
|
1. |
孟祥传,刘润,梁超,侯科宇,孙若晗. 饱和黏土不排水抗剪强度特性研究. 土木工程学报. 2024(05): 86-98 .
![]() |