Citation: | LI Yunyi, WANG Rui, ZHANG Jianmin. Numerical simulation of Rayleigh wave-induced large lateral spreading deformation in gentle sloping ground using SPH[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1333-1340. DOI: 10.11779/CJGE20220489 |
[1] |
SASSA S, TAKAGAWA T. Liquefied gravity flow-induced tsunami: first evidence and comparison from the 2018 Indonesia Sulawesi earthquake and tsunami disasters[J]. Landslides, 2019, 16(1): 195-200. doi: 10.1007/s10346-018-1114-x
|
[2] |
HAZARIKA H, ROHIT D, KIYOTA T, et al. Forensic evaluation of long-distance flow in gently sloped ground during the 2018 Sulawesi earthquake, Indonesia[M]//Latest Developments in Geotechnical Earthquake Engineering and Soil Dynamics. Singapore: Springer Singapore, 2021: 247-280.
|
[3] |
KUTTER B L, MANZARI M T, ZEGHAL M. Model tests and numerical simulations of liquefaction and lateral spreading: LEAP-UCD-2017[M]. New York: Springer Nature, 2019.
|
[4] |
LI Y Y, LUO C, ZHANG J M, et al. Rayleigh wave-shear wave coupling mechanism for large lateral deformation in level liquefiable ground[J]. Computers and Geotechnics, 2022, 143: 104631. doi: 10.1016/j.compgeo.2022.104631
|
[5] |
ZHANG X, KRABBENHOFT K, SHENG D C, et al. Numerical simulation of a flow-like landslide using the particle finite element method[J]. Computational Mechanics, 2015, 55(1): 167-177. doi: 10.1007/s00466-014-1088-z
|
[6] |
CECCATO F, YERRO A, GIRARDI V, et al. Two-phase dynamic MPM formulation for unsaturated soil[J]. Computers and Geotechnics, 2021, 129: 103876. doi: 10.1016/j.compgeo.2020.103876
|
[7] |
荚颖, 唐小微, 栾茂田, 等. 土坝的地震响应及液化无网格法分析[J]. 水利学报, 2009, 40(4): 506-512. doi: 10.3321/j.issn:0559-9350.2009.04.018
JIE Ying, TANG Xiaowei, LUAN Maotian, et al. Meshless analysis on seismic response and liquefaction of embankments[J]. Journal of Hydraulic Engineering, 2009, 40(4): 506-512. (in Chinese) doi: 10.3321/j.issn:0559-9350.2009.04.018
|
[8] |
GINGOLD R A, MONAGHAN J J. Smoothed particle hydrodynamics: theory and application to non-spherical stars[J]. Monthly Notices of the Royal Astronomical Society, 1977, 181(3): 375-389. doi: 10.1093/mnras/181.3.375
|
[9] |
LUCY L B. A numerical approach to the testing of the fission hypothesis[J]. The Astronomical Journal, 1977, 82: 1013. doi: 10.1086/112164
|
[10] |
MAEDA K, SAKAI M. Development of seepage failure analysis procedure of granular ground with Smoothed Particle Hydrodynamics (SPH) method[J]. Journal of Applied Mechanics, 2004, 7: 775-786. doi: 10.2208/journalam.7.775
|
[11] |
BUI H H, FUKAGAWA R, SAKO K, et al. Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic-plastic soil constitutive model[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2008, 32(12): 1537-1570. doi: 10.1002/nag.688
|
[12] |
黄雨, 郝亮, 谢攀, 等. 土体流动大变形的SPH数值模拟[J]. 岩土工程学报, 2009, 31(10): 1520-1524. doi: 10.3321/j.issn:1000-4548.2009.10.007
HUANG Yu, HAO Liang, XIE Pan, et al. Numerical simulation of large deformation of soil flow based on SPH method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1520-1524. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.007
|
[13] |
CRESPO A J C, DOMINGUEZ J M, ROGERS B D, et al. DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH)[J]. Computer Physics Communications, 2015, 187: 204-216. doi: 10.1016/j.cpc.2014.10.004
|
[14] |
胡嫚, 谢谟文, 王立伟. 基于弹塑性土体本构模型的滑坡运动过程SPH模拟[J]. 岩土工程学报, 2016, 38(1): 58-67. doi: 10.11779/CJGE201601005
HU Man, XIE Mo-wen, WANG Li-wei. SPH simulations of post-failure flow of landslides using elastic-plastic soil constitutive model[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 58-67. (in Chinese) doi: 10.11779/CJGE201601005
|
[15] |
唐宇峰, 施富强, 廖学燕. 基于SPH的边坡稳定性计算中失稳判据研究[J]. 岩土工程学报, 2016, 38(5): 904-908. doi: 10.11779/CJGE201605016
TANG Yufeng, SHI Fuqiang, LIAO Xueyan. Failure criteria based on SPH slope stability analysis[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 904-908. (in Chinese) doi: 10.11779/CJGE201605016
|
[16] |
骆钊, 汪淳. 改进的SPH边界处理方法与土体大变形模拟[J]. 计算力学学报, 2018, 35(3): 364-371. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201803016.htm
LUO Zhao, WANG Chun. Improved SPH boundary conditions and simulation for large deformation of soil[J]. Chinese Journal of Computational Mechanics, 2018, 35(3): 364-371. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201803016.htm
|
[17] |
HAN Z, SU B, LI Y G, et al. Numerical simulation of debris-flow behavior based on the SPH method incorporating the Herschel-Bulkley-Papanastasiou rheology model[J]. Engineering Geology, 2019, 255: 26-36. doi: 10.1016/j.enggeo.2019.04.013
|
[18] |
PENG C, LI S, WU W, et al. On three-dimensional SPH modelling of large-scale landslides[J]. Canadian Geotechnical Journal, 2022, 59(1): 24-39. doi: 10.1139/cgj-2020-0774
|
[19] |
FRIGAARD I A, NOUAR C. On the usage of viscosity regularisation methods for visco-plastic fluid flow computation[J]. Journal of Non-Newtonian Fluid Mechanics, 2005, 127(1): 1-26. doi: 10.1016/j.jnnfm.2005.01.003
|
[20] |
LIBERSKY L D, PETSCHEK A G, CARNEY T C, et al. High strain Lagrangian hydrodynamics[J]. Journal of Computational Physics, 1993, 109(1): 67-75. doi: 10.1006/jcph.1993.1199
|
[21] |
MORRIS J P, FOX P J, ZHU Y. Modeling low Reynolds number incompressible flows using SPH[J]. Journal of Computational Physics, 1997, 136(1): 214-226. doi: 10.1006/jcph.1997.5776
|
[22] |
DOMNIK B, PUDASAINI S P, KATZENBACH R, et al. Coupling of full two-dimensional and depth-averaged models for granular flows[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 201: 56-68. doi: 10.1016/j.jnnfm.2013.07.005
|
[23] |
CRESPO A J C, GOMEZ G M, DALRYMPLE R A. Boundary conditionsgenerated by dynamic particles in SPH methods[J]. Computers Material and Continua, 2007, 5: 173-184.
|
[24] |
PAN C, ZHANG R F, LUO H, et al. Target-based algorithm for baseline correction of inconsistent vibration signals[J]. Journal of Vibration and Control, 2018, 24(12): 2562-2575. doi: 10.1177/1077546316689014
|
[25] |
BRADLEY K, MALLICK R, ANDIKAGUMI H, et al. Earthquake-triggered 2018 Palu Valley landslides enabled by wet rice cultivation[J]. Nature Geoscience, 2019, 12(11): 935-939. doi: 10.1038/s41561-019-0444-1
|
[26] |
WATKINSON I M, HALL R. Impact of communal irrigation on the 2018 Palu earthquake-triggered landslides[J]. Nature Geoscience, 2019, 12(11): 940-945. doi: 10.1038/s41561-019-0448-x
|
[27] |
GALLANT A P, MONTGOMERY J, MASON H B, et al. The Sibalaya flowslide initiated by the 28 September 2018 MW 7.5 Palu-Donggala, Indonesia earthquake[J]. Landslides, 2020, 17(8): 1925-1934. doi: 10.1007/s10346-020-01354-1
|
[28] |
KIYOTA T, FURUICHI H, HIDAYAT R F, et al. Overview of long-distance flow-slide caused by the 2018 Sulawesi earthquake, Indonesia[J]. Soils and Foundations, 2020, 60(3): 722-735. doi: 10.1016/j.sandf.2020.03.015
|
1. |
王睿,王兰民,周燕国,王刚. 土动力学与岩土地震工程. 土木工程学报. 2024(07): 71-89+105 .
![]() | |
2. |
魏星,程世涛,谢相焱,陈睿. 考虑强度速率衰减效应的地震滑坡SPH-FEM模拟. 岩土工程学报. 2024(08): 1753-1761 .
![]() | |
3. |
尚文政,刘志刚,游武超,袁健博. 深部厚煤层回采巷道支护设计及围岩控制研究. 煤矿安全. 2024(09): 139-148 .
![]() |