• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIAO Mingqing, FENG Kun, ZHOU Ziyang, LIU Yiteng, LU Zhipeng. Study on the influencing factors for segment dislocation during shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1347-1356. DOI: 10.11779/CJGE20220462
Citation: XIAO Mingqing, FENG Kun, ZHOU Ziyang, LIU Yiteng, LU Zhipeng. Study on the influencing factors for segment dislocation during shield tunnelling[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(7): 1347-1356. DOI: 10.11779/CJGE20220462

Study on the influencing factors for segment dislocation during shield tunnelling

More Information
  • Received Date: April 17, 2022
  • Available Online: February 19, 2023
  • In order to analyze the influences of various factors during the construction period of a shield tunnel on the uplifting dislocation of segments, seven influencing factors are proposed according to the mechanical state, including outer diameter of the tunnel, ground condition, cover depth, coagulation time and density of synchronous grouts, shield tunneling speed and shield tail clearance. Numerical models for tunnel uplifting and segment dislocation are established to investigate the dislocation under different influencing factors. Then the variation laws of the segment dislocation are analyzed under the influences of various factors during the construction period. Moreover, the phenomenon and laws of the segment dislocation during shield tunnelling are verified through the test results of on-site monitoring. The main conclusions are as follows: (1) The segment dislocation will be intensified when the ground stiffness weakens, the density of synchronous grout increases, the coagulation time of synchronous grouts grows, the cover depth decreases, the tunneling speed increases, the shield tail clearance increases, and the grout stiffness after solidification decreases. (2) The increase of the tunnel diameter will lead to the increase of the segment uplifting, but has little correlation with the segment dislocation. (3) When the segment is uplifting, the contact friction between the segment rings and the bolt between the rings will play the role of shear resistance to control the dislocation. (4) Decreasing the uplifting force of the grouts, increasing the connection stiffness between the segments and the rings, strengthening the formation constraint and shortening the length of the fluid segment can reduce the segment uplifting dislocation during construction. (5) The proposed method to calculate the amount of dislocation can be used as a reference for the longitudinal waterproof design of segments.
  • [1]
    周明军. 盾构隧道中管片结构纵向错台的研究[J]. 铁道建筑, 2008, 48(12): 40-42. https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200812019.htm

    ZHOU Mingjun. Study on longitudinal dislocation of segment structure in shield tunnel[J]. Railway Engineering, 2008, 48(12): 40-42. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDJZ200812019.htm
    [2]
    李宇杰, 何平, 秦东平. 盾构隧道管片纵缝错台的影响分析[J]. 工程力学, 2012, 29(11): 277-282. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211043.htm

    LI Yujie, HE Ping, QIN Dongping. Influence analysis on longitudinal dislocation for shield tunnel segment[J]. Engineering Mechanics, 2012, 29(11): 277-282. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201211043.htm
    [3]
    封坤, 谢宏明, 肖明清, 等. 盾构隧道管片接缝密封垫区域平衡优化方法[J]. 中国公路学报, 2022, 35(7): 184-192. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202207015.htm

    FENG Kun, XIE Hongming, XIAO Mingqing, et al. A regional balanced optimal method for segment gasket of shield tunnels[J]. China Journal of Highway and Transport, 2022, 35(7): 184-192. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202207015.htm
    [4]
    张治国, 程志翔, 张孟喜, 等. 考虑衬砌渗透性的盾构下穿既有隧道纵向结构错台变形研究[J]. 中国公路学报, 2022, 35(11): 180-194. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202211017.htm

    ZHANG Zhiguo, CHENG Zhixiang, ZHANG Mengxi, et al. Dislocation deformation of existing longitudinal tunnel structure induced by shield tunneling by under-crossing considering influence of lining permeability[J]. China Journal of Highway and Transport, 2022, 35(11): 180-194. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGGL202211017.htm
    [5]
    陈俊生, 莫海鸿. 盾构隧道管片施工阶段力学行为的三维有限元分析[J]. 岩石力学与工程学报, 2006, 25(增刊2): 3482-3489. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2020.htm

    CHEN Junsheng, MO Haihong. Three- dimensional finite element analysis of mechanical behaviors of shield tunnel segment during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(S2): 3482-3489. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2006S2020.htm
    [6]
    梁禹, 阳军生, 林辉. 大直径盾构隧道施工阶段管片上浮与受力研究[J]. 现代隧道技术, 2016, 53(3): 91-97. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm

    LIANG Yu, YANG Junsheng, LIN Hui. On segment floating and relevant mechanical behaviors during large diameter shield tunnelling[J]. Modern Tunnelling Technology, 2016, 53(3): 91-97. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201603013.htm
    [7]
    舒瑶, 周顺华, 季昌, 等. 多变复合地层盾构隧道施工期管片上浮实测数据分析与量值预测[J]. 岩石力学与工程学报, 2017, 36(S1): 3464-3474. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm

    SHU Yao, ZHOU Shunhua, JI Chang, et al. Analysis of shield tunnel segment uplift data and uplift value forecast during tunnel construction in variable composite formation[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3464-3474. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1040.htm
    [8]
    季昌, 周顺华, 许恺, 等. 盾构隧道管片施工期上浮影响因素的现场试验研究[J]. 岩石力学与工程学报, 2013, 32(S2): 3619-3626. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2079.htm

    JI Chang, ZHOU Shunhua, XU Kai, et al. Field test research on influence factor of upward moving of shield tunnel segments during construction[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(S2): 3619-3626. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2013S2079.htm
    [9]
    朱令, 丁文其, 杨波. 壁后注浆引起盾构隧道上浮对结构的影响[J]. 岩石力学与工程学报, 2012, 31(S1): 3377-3382. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1103.htm

    ZHU Ling, DING Wenqi, YANG Bo. Effect of shield tunnel uplift caused by back-filled grouting on structure[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(S1): 3377-3382. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2012S1103.htm
    [10]
    艾国平, 陈刚, 刘维正, 等. 富水硬岩地层盾构管片上浮机理及控制对策[J]. 现代交通技术, 2021, 18(4): 71-76. https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ202104015.htm

    AI Guoping, CHEN Gang, LIU Weizheng, et al. Floating mechanism and control countermeasures of shield segment in water-rich hard rock formation[J]. Modern Transportation Technology, 2021, 18(4): 71-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JTJZ202104015.htm
    [11]
    李强, 甘鹏路, 钟小春. 盾构隧道管片壁后注浆厚度对隧道抗浮影响研究[J]. 现代隧道技术, 2019, 56(6): 27-35. https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm

    LI Qiang, GAN Penglu, ZHONG Xiaochun. Study on effect of backfilling grouting thickness on anti-floating of the shield tunnel[J]. Modern Tunnelling Technology, 2019, 56(6): 27-35. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XDSD201906004.htm
    [12]
    李明宇, 余刘成, 陈健, 等. 粉质黏土中大直径泥水盾构隧道管片上浮及错台现场测试分析[J]. 铁道科学与工程学报, 2022, 19(6): 1705-1715. https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206025.htm

    LI Mingyu, YU Liucheng, CHEN Jian, et al. In situ test analysis of segment uplift and dislocation of large-diameter slurry shield tunnel in silty clay[J]. Journal of Railway Science and Engineering, 2022, 19(6): 1705-1715. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CSTD202206025.htm
    [13]
    (日本)土木学会. 隧道标准规范(盾构篇)及解说[M]. 朱伟, 译. 北京: 中国建筑工业出版社, 2001.

    Japanese Society of Civil Engineering. Tunnel Standard Specification (Shield Tunnel Section) and Explaination[M]. ZHU Wei, Tran. Beijing: China Architecture & Building Press, 2001. (in Chinese)
    [14]
    XIAO M Q, FENG K, ZHNAG Y, et al. Analysis of segment dislocation caused by grout buoyancy during synchronous grouting of shield tunnels[J]. Tunnel Construction, 2021, 41(12): 2048-2057.
    [15]
    舒瑶, 季昌, 周顺华, 等. 考虑地层渗透性的盾构隧道施工期管片上浮预测[J]. 岩石力学与工程学报, 2017, 36(增刊1): 3516-3524. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm

    SHU Yao, JI Chang, ZHOU Shunhua, et al. Prediction for shield tunnel segment uplift considering the effect of stratum permeability[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(S1): 3516-3524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2017S1046.htm
    [16]
    丁宇能. 盾构隧道壁后注浆材料物理力学性质试验研究[D]. 南京: 东南大学, 2017.

    DING Yuneng. Experimental Study on Physical-Mechanical Behavior of Backfill Groutng Material in Shield Tunneling[D]. Nanjing: Southeast University, 2017. (in Chinese)
  • Other Related Supplements

Catalog

    Article views (387) PDF downloads (116) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return