• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Hui-mei, CHEN Shi-guan, WANG Lei, CHENG Shu-fan, YANG Geng-she, SHEN Yan-jun. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. DOI: 10.11779/CJGE202204004
Citation: ZHANG Hui-mei, CHEN Shi-guan, WANG Lei, CHENG Shu-fan, YANG Geng-she, SHEN Yan-jun. Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(4): 622-631. DOI: 10.11779/CJGE202204004

Energy dissipation and fractal characteristics of weakly cemented red sandstone under disturbance impact

More Information
  • Received Date: June 09, 2021
  • Available Online: September 22, 2022
  • To explore the energy dissipation law and failure mode of soft rock interlayer in western mining areas of China after dynamic disturbance, the dynamic impact failure tests on weakly cemented red sandstone are carried out by using the separated Hopkinson compression bar device. Under the impact of this red sandstone under different loading rates, different times of disturbance and whether there is the disturbance or not, the energy dissipation and fractal characteristics of the samples during the same loading rate impact failure are analyzed. The experimental results show that under different disturbance impact rates, with the increase of disturbance impact times, the reflection energy increases, while the transmission energy and dissipation energy decrease. The reflection energy of the samples under the impact of high-speed disturbance is higher than that of the low-speed disturbance impact, while the dissipative energy is the opposite. Moreover, the dissipative energy of the samples under the impact of low-speed rate disturbance is opposite. The energy dissipation rate and energy dissipation density are higher than those of the high-speed disturbance impact, which indicates that the energy utilization rate of the samples is higher under the impact of low-speed disturbance. In the impact failure tests, with the increase of the number of disturbance impact, the fragmentation degree of the sample after the low-speed rate disturbance is more serious than that of the undisturbed and high-speed rate disturbance. The low-speed rate disturbance of fractal dimension Db > undisturbed > high-speed rate disturbance shows that the fractal dimension is positively correlated with the number of disturbance shocks. The results show that the impact rate is negatively correlated with the disturbance. Under the same number of disturbance impact, the cumulative dissipation energy and energy density of Db of the low-speed rate-disturbed samples are higher than those of the high-speed disturbed samples, while the cumulative reflection energy is opposite.
  • [1]
    FAN L F, REN F, MA G W. Experimental study on viscoelastic behavior of sedimentary rock under dynamic loading[J]. Rock Mechanics and Rock Engineering, 2012, 45(3): 433–438. doi: 10.1007/s00603-011-0197-7
    [2]
    LI X B, WENG L. Numerical investigation on fracturing behaviors of deep-buried opening under dynamic disturbance[J]. Tunnelling and Underground Space Technology, 2016, 54: 61–72. doi: 10.1016/j.tust.2016.01.028
    [3]
    WENG L, HUANG L Q, TAHERI A, et al. Rockburst characteristics and numerical simulation based on a strain energy density index: a case study of a roadway in Linglong gold mine, China[J]. Tunnelling and Underground Space Technology, 2017, 69: 223–232. doi: 10.1016/j.tust.2017.05.011
    [4]
    谢和平. 分形-岩石力学导论[M]. 北京: 科学出版社, 1996.

    XIE He-ping. Fractal—Introduction to Rock Mechanics[M]. Beijing: Science Press, 1996. (in Chinese)
    [5]
    WENG L, WU Z J, LIU Q S, et al. Energy dissipation and dynamic fragmentation of dry and water-saturated siltstones under sub-zero temperatures[J]. Engineering Fracture Mechanics, 2019, 220: 106659. doi: 10.1016/j.engfracmech.2019.106659
    [6]
    WANG L, QIN Y, JIA H B, et al. Study on mechanical properties and energy dissipation of frozen sandstone under shock loading[J]. Shock and Vibration, 2020(4): 8893128.
    [7]
    赵忠虎, 谢和平. 岩石变形破坏过程中的能量传递和耗散研究[J]. 四川大学学报(工程科学版), 2008, 40(2): 26–31. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm

    ZHAO Zhong-hu, XIE He-ping. Energy transfer and energy dissipation in rock deformation and fracture[J]. Journal of Sichuan University (Engineering Science Edition), 2008, 40(2): 26–31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH200802006.htm
    [8]
    黎立云, 徐志强, 谢和平, 等. 不同冲击速度下岩石破坏能量规律的实验研究[J]. 煤炭学报, 2011, 36(12): 2007– 2011. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112009.htm

    LI Li-yun, XU Zhi-qiang, XIE He-ping, et al. Failure experimental study on energy laws of rock under differential dynamic impact velocities[J]. Journal of China Coal Society, 2011, 36(12): 2007–2011. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB201112009.htm
    [9]
    谢和平, 鞠杨, 黎立云. 基于能量耗散与释放原理的岩石强度与整体破坏准则[J]. 岩石力学与工程学报, 2005, 24(17): 3003–3010. doi: 10.3321/j.issn:1000-6915.2005.17.001

    XIE He-ping, JU Yang, LI Li-yun. Criteria for strength and structural failure of rocks based on energy dissipation and energy release principles[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(17): 3003–3010. (in Chinese) doi: 10.3321/j.issn:1000-6915.2005.17.001
    [10]
    LUNDBERG B, OKROUHLIK M. Efficiency of a percussive rock drilling process with consideration of wave energy radiation into the rock[J]. International Journal of Impact Engineering, 2006, 32(10): 1573–1583. doi: 10.1016/j.ijimpeng.2005.02.001
    [11]
    HONG L, ZHOU Z L, YIN T B, et al. Energy consumption in rock fragmentation at intermediate strain rate[J]. Journal of Central South University of Technology, 2009, 16(4): 677–682. doi: 10.1007/s11771-009-0112-5
    [12]
    李夕兵, 周子龙, 叶州元, 等. 岩石动静组合加载力学特性研究[J]. 岩石力学与工程学报, 2008, 27(7): 1387–1395. doi: 10.3321/j.issn:1000-6915.2008.07.011

    LI Xi-bing, ZHOU Zi-long, YE Zhou-yuan, et al. Study of rock mechanical characteristics under coupled static and dynamic loads[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(7): 1387–1395. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.07.011
    [13]
    FENG J J, WANG E Y, SHEN R X, et al. Investigation on energy dissipation and its mechanism of coal under dynamic loads[J]. Geomechanics and Engineering, 2016, 11(5): 657–670. doi: 10.12989/gae.2016.11.5.657
    [14]
    MILLON O, RUIZ-RIPOLL M L, HOERTH T. Analysis of the behavior of sedimentary rocks under impact loading[J]. Rock Mechanics and Rock Engineering, 2016, 49(11): 4257–4272. doi: 10.1007/s00603-016-1010-4
    [15]
    GONG F Q, YE H, LUO Y. The effect of high loading rate on the behaviour and mechanical properties of coal-rock combined body[J]. Shock and Vibration, 2018(6): 1–9.
    [16]
    张文清, 石必明, 穆朝民. 冲击载荷作用下煤岩破碎与耗能规律实验研究[J]. 采矿与安全工程学报, 2016, 33(2): 375–380. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602030.htm

    ZHANG Wen-qing, SHI Bi-ming, MU Chao-min. Experimental research on failure and energy dissipation law of coal under impact load[J]. Journal of Mining & Safety Engineering, 2016, 33(2): 375–380. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201602030.htm
    [17]
    王利, 高谦. 基于损伤能量耗散的岩体块度分布预测[J]. 岩石力学与工程学报, 2007, 26(6): 1202–1211. doi: 10.3321/j.issn:1000-6915.2007.06.015

    WANG Li, GAO Qian. Fragmentation distribution prediction of rock based on damage energy dissipation[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(6): 1202–1211. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.06.015
    [18]
    李成杰, 徐颖, 张宇婷, 等. 冲击荷载下裂隙类煤岩组合体能量演化与分形特征研究[J]. 岩石力学与工程学报, 2019, 38(11): 2231–2241. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911008.htm

    LI Cheng-jie, XU Ying, ZHANG Yu-ting, et al. Study on energy evolution and fractal characteristics of cracked coal-rock-like combined body under impact loading[J]. Chinese Journal of Rock Mechanics and Engineering, 2019, 38(11): 2231–2241. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201911008.htm
    [19]
    李成杰, 徐颖, 叶洲元. 冲击荷载下类煤岩组合体能量耗散与破碎特性分析[J]. 岩土工程学报, 2020, 42(5): 981–988. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005027.htm

    LI Cheng-jie, XU Ying, YE Zhou-yuan. Energy dissipation and crushing characteristics of coal-rock-like combined body under impact loading[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 981–988. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202005027.htm
    [20]
    戴兵, 罗鑫尧, 单启伟, 等. 循环冲击荷载下含孔洞岩石损伤特性与能量耗散分析[J]. 中国安全科学学报, 2020, 30(7): 69–77. https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202007011.htm

    DAI Bing, LUO Xin-yao, SHAN Qi-wei, et al. Analysis on damage characteristics and energy dissipation of rock with a single hole under cyclic impact loads[J]. China Safety Science Journal, 2020, 30(7): 69–77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZAQK202007011.htm
    [21]
    邓树新, 王明洋, 李杰, 等. 冲击扰动下滑移型岩爆的模拟试验及机理探讨[J]. 岩土工程学报, 2020, 42(12): 2215–2221. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm

    DENG Shu-xin, WANG Ming-yang, LI Jie, et al. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215–2221. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202012009.htm
    [22]
    谢和平, 鞠杨, 黎立云, 等. 岩体变形破坏过程的能量机制[J]. 岩石力学与工程学报, 2008, 27(9): 1729–1740. doi: 10.3321/j.issn:1000-6915.2008.09.001

    XIE He-ping, JU Yang, LI Li-yun, et al. Energy mechanism of deformation and failure of rock masses[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(9): 1729–1740. (in Chinese) doi: 10.3321/j.issn:1000-6915.2008.09.001
    [23]
    谢和平, 彭瑞东, 鞠杨. 岩石变形破坏过程中的能量耗散分析[J]. 岩石力学与工程学报, 2004, 23(21): 3565–3570. doi: 10.3321/j.issn:1000-6915.2004.21.001

    XIE He-ping, PENG Rui-dong, JU Yang. Energy dissipation of rock deformation and fracture[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(21): 3565–3570. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.21.001
    [24]
    马芹永, 高常辉. 冲击荷载下玄武岩纤维水泥土吸能及分形特征[J]. 岩土力学, 2018, 39(11): 3921–3928, 3968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm

    MA Qin-yong, GAO Chang-hui. Energy absorption and fractal characteristics of basalt fiber-reinforced cement-soil under impact loads[J]. Rock and Soil Mechanics, 2018, 39(11): 3921–3928, 3968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201811003.htm
    [25]
    金解放, 吴越, 张睿, 等. 冲击速度和轴向静载对红砂岩破碎及能耗的影响[J]. 爆炸与冲击, 2020, 40(10): 42–55. https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202010004.htm

    JIN Jie-fang, WU Yue, ZHANG Rui, et al. Effect of impact velocity and axial static stress on fragmentation and energy dissipation of red sandstone[J]. Explosion and Shock Waves, 2020, 40(10): 42–55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BZCJ202010004.htm
    [26]
    平琦, 马芹永, 袁璞. 岩石试件SHPB劈裂拉伸试验中能量耗散分析[J]. 采矿与安全工程学报, 2013, 30(3): 401–407. https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm

    PING Qi, MA Qin-yong, YUAN Pu. Energy dissipation analysis of stone specimens in SHPB tensile test[J]. Journal of Mining & Safety Engineering, 2013, 30(3): 401–407. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KSYL201303017.htm
  • Cited by

    Periodical cited type(16)

    1. 王磊,陈礼鹏,袁秋鹏,焦振华,刘怀谦. 不同冲击气压下煤样动态剪切强度的长径比效应. 岩土工程学报. 2024(01): 131-139 . 本站查看
    2. 张硕彦,蒋楠,姚颖康,周传波,罗学东,曹华彰. 冻结砂岩冲击及爆破破岩能量耗散等效模型研究. 岩石力学与工程学报. 2024(05): 1255-1269 .
    3. 马衍坤,黄勤豪,孔祥国,冯俊军,殷志强,王超. 震动载荷多次作用下烟煤孔裂隙结构演化特征试验研究. 煤炭学报. 2024(04): 1882-1893 .
    4. 蒋楠,张硕彦,姚颖康,周传波,罗学东,曹华彰. 冻结砂岩爆破破岩的能量耗散特性. 爆炸与冲击. 2024(05): 142-157 .
    5. 孙卓越,吴拥政,周鹏赫. 冲击载荷下砂质泥岩破碎分形特征. 中国安全生产科学技术. 2024(06): 133-139 .
    6. 闫统钊,牛犇,郭璜,张宝亮,陈立伟. 动态加载下饱水煤样力学特性及能量耗散规律. 煤矿安全. 2024(07): 127-135 .
    7. 龙尧,张同文,张家生,肖源杰. 红砂岩粗粒土动力试验及颗粒破碎模型研究. 振动与冲击. 2023(03): 270-279 .
    8. 贾蓬,卢佳亮,毛松泽,钱一锦,孙占阳. 不同饱和度冻结红砂岩动态压缩性能及能量特性试验研究. 中南大学学报(自然科学版). 2023(03): 1131-1140 .
    9. 贾静恩,张彬. 扰动荷载下聚丙烯纤维喷射混凝土力学性能研究. 复合材料科学与工程. 2023(06): 73-79+94 .
    10. 李祥龙,张志平,王建国,侯得峰,张智宇,黄永辉. SHPB试验技术在凿岩爆破工程教学中的应用. 实验室研究与探索. 2023(07): 178-181 .
    11. 李金洋. 冲击载荷下砂岩动态拉伸力学及能量耗散特征. 中国矿山工程. 2023(05): 47-52 .
    12. 柯健平,穆朝民. 冲击载荷下珊瑚砂混凝土的能量耗散与分形维数的研究. 江西建材. 2023(10): 8-13 .
    13. 贾蓬,卢佳亮,毛松泽,郭子铭,王茵. 不同饱和度冻融砂岩动态冲击压缩特性及损伤机制研究. 岩石力学与工程学报. 2023(12): 2908-2918 .
    14. 金解放,杨洪灏,孙俊涛. 高水压对岩石动态能量耗散和破坏特性的影响. 煤炭学报. 2023(S2): 563-574 .
    15. 解北京,于瑞星,陈冬新,栾铮,杨帆. 动载下石灰岩能耗指标影响因素研究. 中国安全生产科学技术. 2022(11): 62-70 .
    16. 张慧梅,陈世官,王磊,袁超. 正梯度冲击下冻结红砂岩力学性能及损伤效应研究. 振动与冲击. 2022(24): 1-10 .

    Other cited types(14)

Catalog

    Article views (248) PDF downloads (171) Cited by(30)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return