• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Hang, DENG Tingting, DENG Yongfeng, KE Han, ZHU Xiangyang. State of the art: long-term performance of cement-based solidfied soil under the acid/alkaline/salinity attacking environment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1072-1085. DOI: 10.11779/CJGE20220370
Citation: LIU Hang, DENG Tingting, DENG Yongfeng, KE Han, ZHU Xiangyang. State of the art: long-term performance of cement-based solidfied soil under the acid/alkaline/salinity attacking environment[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1072-1085. DOI: 10.11779/CJGE20220370

State of the art: long-term performance of cement-based solidfied soil under the acid/alkaline/salinity attacking environment

More Information
  • Received Date: March 29, 2022
  • Available Online: May 18, 2023
  • Soil and groundwater are often affected by industry, agriculture, sea water, and municipal sewage, and have different kinds of corrosive ions. When cement-based materials are used to reclaim the heavy-metal-contaminated sites by the solidification/stabilization method, these corrosive ions will attack the solidified soils, leading to the performance deterioration and the re-release of the heavy-metal cations. This re-release will result in the challenge of the secondary pollution under the long-term services. Presently, the research on soil solidification mainly focuses on the development of new composite solidified agent and the short-term performance, and more attention to the long-term performance under acid/alkaline/salinity attacking environment should be paid. In the study, the engineering performance and leaching characteristics are first summarized, and the interaction mechanism among the soil, binder, heavy metal and attacking environment was systematically elaborated, so as to provide a reference for the improvement of the solidified remediation quality and durability of heavy metal contaminated soil.
  • [1]
    MALVIYA R, CHAUDHARY R. Leaching behavior and immobilization of heavy metals in solidified/stabilized products[J]. Journal of Hazardous Materials, 2006, 137(1): 207-217. doi: 10.1016/j.jhazmat.2006.01.056
    [2]
    王小彬, 闫湘, 李秀英, 等. 磷石膏农用的环境安全风险[J]. 中国农业科学, 2019, 52(2): 293-311. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201902009.htm

    WANG Xiaobin, YAN Xiang, LI Xiuying, et al. Environmental risks for application of phosphogysum in agricultural soils in China[J]. Scientia Agricultura Sinica, 2019, 52(2): 293-311. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNYK201902009.htm
    [3]
    KAMPOUROGLOU E, KOLLIAS K, STOURAITI C, et al. Acid generation and heavy metal leachability from lignite spoil heaps: impact to the topsoils of oropos basin, north Attica, Greece[J]. Bulletin of Environmental Contamination and Toxicology, 2021, 106(3): 465-474. doi: 10.1007/s00128-021-03122-w
    [4]
    MIZERNA K, KRÓL A. Leaching of heavy metals from monolithic waste[J]. Environment Protection Engineering, 2018, 44(4): 143-158.
    [5]
    郭颖, 李玉冰, 薛生国, 等. 广西某赤泥堆场周边土壤重金属污染风险[J]. 环境科学, 2018, 39(7): 3349-3357. https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201807043.htm

    GUO Ying, LI Yubing, XUE Shengguo, et al. Risk analysis of heavy metal contamination in farmland soil around a bauxite residue disposal area in Guangxi[J]. Environmental Science, 2018, 39(7): 3349-3357. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJKZ201807043.htm
    [6]
    陈四利, 杨雨林, 周辉, 等. 污水环境对水泥土渗透性能影响的试验研究[J]. 岩土力学, 2015, 36(11): 3047-3054.

    CHEN Sili, YANG Yulin, ZHOU Hui, et al. Effect of sewage environment on permeability of cemented soil[J]. Rock and Soil Mechanics, 2015, 36(11): 3047-3054. (in Chinese)
    [7]
    王登权, 何伟, 王强, 等. 重金属在水泥基材料中的固化和浸出研究进展[J]. 硅酸盐学报, 2018, 46(5): 683-693. https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201805012.htm

    WANG Dengquan, HE Wei, WANG Qiang, et al. Review on stabilization and leaching of heavy metals in cementitious materials[J]. Journal of the Chinese Ceramic Society, 2018, 46(5): 683-693. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GXYB201805012.htm
    [8]
    Solidification/Stabilization team. Technical/Regulatory Guidance: Development of Performance Specifications for Solidification/Stabilization[M]. Washington D C: The Interstate Technology & Regulatory Council, 2011.
    [9]
    董猛荣, 杨俊杰, 王曼, 等. 海相软土场地水泥土劣化机理室内试验研究[J]. 中国海洋大学学报(自然科学版), 2020, 50(1): 93-103. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202001011.htm

    DONG Mengrong, YANG Junjie, WANG Man, et al. Laboratory study on deterioration mechanism of cement soil in marine clay sites[J]. Periodical of Ocean University of China, 2020, 50(1): 93-103. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY202001011.htm
    [10]
    赵述华, 陈志良, 张太平, 等. 重金属污染土壤的固化/稳定化处理技术研究进展[J]. 土壤通报, 2013, 44(6): 1531-1536.

    ZHAO Shuhua, CHEN Zhiliang, ZHANG Taiping, et al. Advances in solidification/stabilization technology treatment of heavy metals in contaminated soils[J]. Chinese Journal of Soil Science, 2013, 44(6): 1531-1536. (in Chinese)
    [11]
    邢皓枫, 张好, 李浩铭. 高含盐水泥土的力学特性及微观结构研究[J]. 水文地质工程地质, 2021, 48(3): 102-109. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202103013.htm

    XING Haofeng, ZHANG Hao, LI Haoming. Mechanical characteristics and microstructure of salt-rich cement-soil[J]. Hydrogeology & Engineering Geology, 2021, 48(3): 102-109. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG202103013.htm
    [12]
    贾景超, 陈志涛, 郭佳朋, 等. 可溶盐对水泥土强度影响试验研究[J]. 人民长江, 2019, 50(S1): 298-301. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2019S1075.htm

    JIA Jingchao, CHEN Zhitao, GUOJIA Peng, et al. Experimental study on effect of soluble salt on cement-soil strength[J]. Yangtze River, 2019, 50(S1): 298-301. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2019S1075.htm
    [13]
    HORPIBULSUK S, PHOJAN W, SUDDEEPONG A, et al. Strength development in blended cement admixed saline clay[J]. Applied Clay Science, 2012, 55: 44-52. doi: 10.1016/j.clay.2011.10.003
    [14]
    KHOSHSIRAT V, BAYESTEH H, SHARIFI M. Effect of high salinity in grout on the performance of cement-stabilized marine clay[J]. Construction and Building Materials, 2019, 217: 93-107. doi: 10.1016/j.conbuildmat.2019.05.038
    [15]
    杨雨林. 污水对水泥土渗透性能影响的试验研究[D]. 沈阳: 沈阳工业大学, 2014.

    YANG Yulin. Experimental Study on Effects of Polluted Water Environment on Permeability of Cemented Soil[D]. Shenyang: Shenyang University of Technology, 2014. (in Chinese)
    [16]
    方灿东. 氯和重金属共存对水泥熟料中重金属固化及矿物的影响[D]. 南宁: 广西大学, 2020.

    FANG Candong. Co-effects of Chlorine and Heavy Metals on Minerals and Solidification of Heavy Metals in Cement Clinker[D]. Nanning: Guangxi University, 2020. (in Chinese)
    [17]
    OUHADI V R, YONG R N, DEIRANLOU M. Enhancement of cement-based solidification/stabilization of a lead-contaminated smectite clay[J]. Journal of Hazardous Materials, 2021, 403: 123969. doi: 10.1016/j.jhazmat.2020.123969
    [18]
    KOGBARA R B, AL-TABBAA A, YI Y, et al. pH-dependent leaching behaviour and other performance properties of cement-treated mixed contaminated soil[J]. Journal of Environmental Sciences, 2012, 24(9): 1630-1638. doi: 10.1016/S1001-0742(11)60991-1
    [19]
    史晋荣, 高彦斌. 氯化物侵蚀对水泥土力学性能影响的试验研究[J]. 中北大学学报(自然科学版), 2016, 37(4): 430-435. doi: 10.3969/j.issn.1673-3193.2016.04.020

    SHI Jinrong, GAO Yanbin. Research of chloride erosion effect on cement soil mechanics performance test[J]. Journal of North University of China (Natural Science Edition), 2016, 37(4): 430-435. (in Chinese) doi: 10.3969/j.issn.1673-3193.2016.04.020
    [20]
    VAN NGOC P, TURNER B, HUANG J S, et al. Experimental study on the durability of soil-cement columns in coastal areas[J]. Geotechnical Engineering Journal of the SEAGS & AGSSEA, 2017, 48(4): 138-143.
    [21]
    白晓红, 赵永强, 韩鹏举, 等. 污染环境对水泥土力学特性影响的试验研究[J]. 岩土工程学报, 2007, 29(8): 1260-1263. doi: 10.3321/j.issn:1000-4548.2007.08.024

    BAI Xiaohong, ZHAO Yongqiang, HAN Pengju, et al. Experimental study on mechanical property of cemented soil under environmental contaminations[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(8): 1260-1263. (in Chinese) doi: 10.3321/j.issn:1000-4548.2007.08.024
    [22]
    CHEN S L, HOU R, ZHANG J Y, et al. Experimental investigations on permeability and damage mechanism of cemented soil in acidic and alkali environments[J]. Journal of Measurements in Engineering, 2018, 6(4): 277-288. doi: 10.21595/jme.2018.20187
    [23]
    JIN Q, CUI X Z, SU J W, et al. Laboratory measurement and analysis of the deteriorated layer permeability coefficient of soil-cement deteriorated in a saline environment[J]. Materials, 2019, 12(14): 2245. doi: 10.3390/ma12142245
    [24]
    BAI Shuqi, YANG Junjie, LI En, et al. Study on permeability of deteriorated cement-soil[J]. Water Resources and Hydropower Engineering, 2021, 52(2): 184-193.
    [25]
    王向阳, 刘晶晶, 查甫生, 等. 氯盐侵蚀作用对水泥固化铅污染土化学稳定性的影响[J]. 东南大学学报(自然科学版), 2016, 46(增刊1): 169-173. https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1030.htm

    WANG Xiangyang, LIU Jingjing, ZHA Fusheng, et al. Effects of chloride corrosion on chemical durability of cement-stabilized lead-contaminated soils[J]. Journal of Southeast University (Natural Science Edition), 2016, 46(S1): 169-173. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DNDX2016S1030.htm
    [26]
    LIU J J, ZHA F S, XU L, et al. Effect of chloride attack on strength and leaching properties of solidified/stabilized heavy metal contaminated soils[J]. Engineering Geology, 2018, 246: 28-35. doi: 10.1016/j.enggeo.2018.09.017
    [27]
    ZHANG H Q, YANG Y Y, YI Y C. Effect of sulfate erosion on strength and leaching characteristic of stabilized heavy metal contaminated red clay[J]. Transactions of Nonferrous Metals Society of China, 2017, 27(3): 666-675.
    [28]
    ZIEGLER F, GIERÉ R, JOHNSON C A. Sorption mechanisms of zinc to calcium silicate hydrate: sorption and microscopic investigations[J]. Environmental Science & Technology, 2001, 35(22): 4556-4561.
    [29]
    杜延军, 蒋宁俊, 王乐, 等. 水泥固化锌污染高岭土强度及微观特性研究[J]. 岩土工程学报, 2012, 34(11): 2114-2120. http://www.cgejournal.com/cn/article/id/14903

    DU Yanjun, JIANG Ningjun, WANG Le, et al. Strength and microstructure characteristics of cement-based solidified/stabilized zinc-contaminated Kaolin[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(11): 2114-2120. (in Chinese) http://www.cgejournal.com/cn/article/id/14903
    [30]
    刘兆鹏, 杜延军, 刘松玉, 等. 淋滤条件下水泥固化铅污染高岭土的强度及微观特性的研究[J]. 岩土工程学报, 2014, 36(3): 547-554. doi: 10.11779/CJGE201403018

    LIU Zhaopeng, DU Yanjun, LIU Songyu, et al. Strength and microstructural characteristics of cement solidified lead-contaminated Kaolin exposed to leaching circumstances[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 547-554. (in Chinese) doi: 10.11779/CJGE201403018
    [31]
    TASHIRO C, OBA J, AKAMA K. The effects of several heavy metal oxides on the formation of ettringite and the microstructure of hardened ettringite[J]. Cement and Concrete Research, 1979, 9(3): 303-308.
    [32]
    宁建国, 黄新, 许晟. 土样pH值对固化土抗压强度增长的影响研究[J]. 岩土工程学报, 2007, 29(1): 98-102. http://www.cgejournal.com/cn/article/id/12282

    NING Jianguo, HUANG Xin, XU Sheng. Effect of pH value of soil on strength increasing of the stabilized soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 98-102. (in Chinese) http://www.cgejournal.com/cn/article/id/12282
    [33]
    宁宝宽, 陈四利, 刘斌, 等. 环境侵蚀下水泥土的力学效应试验研究[J]. 岩土力学, 2005, 26(4): 600-603. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504019.htm

    NING Baokuan, CHEN Sili, LIU Bin, et al. Experimental study of cemented soil under environmental erosion[J]. Rock and Soil Mechanics, 2005, 26(4): 600-603. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200504019.htm
    [34]
    MOLDRUP P, KRUSE C W, YAMAGUCHI T, et al. Modeling diffusion and reaction in soils. 1. A diffusion and reaction corrected finite difference calculation scheme[J]. Soil Science, 1996, 161(6): 347-354.
    [35]
    郑文忠, 邹梦娜, 王英. 碱激发胶凝材料研究进展[J]. 建筑结构学报, 2019, 40(1): 28-39.

    ZHENG Wenzhong, ZOU Mengna, WANG Ying. Literature review of alkali-activated cementitious materials[J]. Journal of Building Structures, 2019, 40(1): 28-39. (in Chinese)
    [36]
    IPAVEC A, VUK T, GABROVŠEK R, et al. Chloride binding into hydrated blended cements: The influence of limestone and alkalinity[J]. Cement and Concrete Research, 2013, 48: 74-85.
    [37]
    SHAO Y, ZHOU M, WANG W, et al. Identification of chromate binding mechanisms in Friedel's salt[J]. Construction and Building Materials, 2013, 48: 942-947.
    [38]
    MIN X B, LIU D G, CHAI L Y, et al. Comparison of arsenic immobilization properties among calcium silicate hydrate, ettringite, and Friedel's salt in a slag-based binder[J]. Environmental Progress & Sustainable Energy, 2019, 38(S1): S422-S428.
    [39]
    马冬梅. 可溶盐对水泥土强度影响的微观分析[J]. 公路交通科技, 2008, 25(4): 16-21. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200804003.htm

    MA Dongmei. Microstructural analysis of influence of soluble ions on strength of cemented soil[J]. Journal of Highway and Transportation Research and Development, 2008, 25(4): 16-21. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GLJK200804003.htm
    [40]
    宁宝宽, 金生吉, 陈四利. 侵蚀性离子对水泥土力学特性的影响[J]. 沈阳工业大学学报, 2006, 28(2): 178-181.

    NING Baokuan, JIN Shengji, CHEN Sili. Influence of erosive ions on mechanical properties of cemented soil[J]. Journal of Shenyang University of Technology, 2006, 28(2): 178-181. (in Chinese)
    [41]
    韩鹏举, 白晓红. 无机化合物对水泥土腐蚀的作用机理及试验[J]. 腐蚀与防护, 2013, 34(5): 381-384.

    HAN Pengju, BAI Xiaohong. Experiment and chemical mechanism of corrosive action of inorganic compounds on cemneted soil[J]. Corrosion & Protection, 2013, 34(5): 381-384. (in Chinese)
    [42]
    贾世波, 张学霞, 李媛媛. 碱激发水泥固化稳定重金属污染土的强度和浸出特性试验研究[J]. 工业建筑, 2019, 49(8): 142-146. https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201908025.htm

    JIA Shibo, ZHANG Xuexia, LI Yuanyuan. Strength and leachability properties of heavy metal contaminated soil stabilized by alkali-activated cement[J]. Industrial Construction, 2019, 49(8): 142-146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GYJZ201908025.htm
    [43]
    SHIHATA S A, BAGHDADI Z A. Long-term strength and durability of soil cement[J]. Journal of Materials in Civil Engineering, 2001, 13(3): 161-165.
    [44]
    韩鹏举, 刘新, 白晓红. 硫酸钠对水泥土的强度及微观孔隙影响研究[J]. 岩土力学, 2014, 35(9): 2555-2561. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409019.htm

    HAN Pengju, LIU Xin, BAI Xiaohong. Effect of sodium sulfate on strength and micropores of cemented soil[J]. Rock and Soil Mechanics, 2014, 35(9): 2555-2561. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409019.htm
    [45]
    章定文, 项莲, 曹智国. CaO对钙矾石固化/稳定化重金属铅污染土的影响[J]. 岩土力学, 2018, 39(1): 29-35.

    ZHANG Dingwen, XIANG Lian, CAO Zhiguo. Effect of CaO on ettringite stabilization/solidification of lead- contaminated soil[J]. Rock and Soil Mechanics, 2018, 39(1): 29-35. (in Chinese)
    [46]
    韩鹏举, 张文博, 刘新, 等. 氯化镁对水泥土早期强度的影响研究[J]. 岩土工程学报, 2014, 36(6): 1173-1178. doi: 10.11779/CJGE201406025

    HAN Pengju, ZHANG Wenbo, LIU Xin, et al. Early strength of cemented soils polluted by magnesium chloride[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(6): 1173-1178. (in Chinese) doi: 10.11779/CJGE201406025
    [47]
    VALIPOUR M, PARGAR F, SHEKARCHI M, et al. In situ study of chloride ingress in concretes containing natural zeolite, metakaolin and silica fume exposed to various exposure conditions in a harsh marine environment[J]. Construction and Building Materials, 2013, 46: 63-70.
    [48]
    EHLEN M, THOMAS M, BENTZ E. Life-365 service life prediction model(TM) version 2.0[J]. Concrete International, 2009: 41-46.
    [49]
    LI L Y, EASTERBROOK D, XIA J, et al. Numerical simulation of chloride penetration in concrete in rapid chloride migration tests[J]. Cement & Concrete Composites, 2015, 63: 113-121.
    [50]
    谢清, 韦江雄, 吴江, 等. 多离子在混凝土中传输及其对SO42-迁移的影响研究[J]. 混凝土, 2020(8): 72-78.

    XIE Qing, WEI Jiangxiong, WU Jiang, et al. Study on the multi-species ionic transport in concrete and its influence on migration of SO42-[J]. Concrete, 2020(8): 72-78. (in Chinese)
    [51]
    张成琳, 刘清风. 钢筋混凝土中氯盐和硫酸盐耦合侵蚀研究进展[J]. 材料导报, 2022, 36(1): 69-77. https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202201008.htm

    ZHANG Chenglin, LIU Qingfeng. Coupling erosion of chlorides and sulfates in reinforced concrete: a review[J]. Materials Reports, 2022, 36(1): 69-77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-CLDB202201008.htm
    [52]
    UK Environment Agency. EA NEN 7375: Leaching Characteristics-Determination of the Leaching of Inorganic Components From Moulded or Monolithic Materials with a Diffusion Test-Solid Earthy and Stony Materials[S]. 2004.
    [53]
    US Environmental Protection Agency. SW-846 Test: Mass Transfer Rates of Constituents in Monolithic or Compacted Granular Materials Using a Semi-Dynamic Tank Leaching Procedure[S]. 2017.
    [54]
    ZHANG W L, ZHAO L Y, YUAN Z J, et al. Assessment of the long-term leaching characteristics of cement-slag stabilized/solidified contaminated sediment[J]. Chemosphere, 2021, 267: 128926.
    [55]
    LIU Q, WANG X, GAO M, et al. Heavy metal leaching behaviour and long-term environmental risk assessment of cement-solidified municipal solid waste incineration fly ash in sanitary landfill[J]. Chemosphere, 2022, 300: 134571.
    [56]
    乔兵, 赵仲辉, 王苏娜, 等. 水泥固化淤泥中重金属扩散的试验研究[J]. 河南科学, 2017, 35(3): 452-459.

    QIAO Bing, ZHAO Zhonghui, WANG Suna, et al. Laboratory study on diffusion of heavy metals in cement-treated dredged material[J]. Henan Science, 2017, 35(3): 452-459. (in Chinese)
    [57]
    刘兆鹏. 降雨作用下固化稳定化重金属污染土浸出特性的模型试验与数值模拟研究[D]. 南京: 东南大学, 2015.

    LIU Zhaopeng. The Column Model Test and Numerical Simulation of Leaching Characteristics of Solidified/ Stabilized Heavy Metal Contaminated Soil Under Acid Rain[D]. Nanjing: Southeast University, 2015. (in Chinese)
    [58]
    BISHOP P L. Leaching of inorganic hazardous constituents from stabilized/solidified hazardous wastes[J]. Hazardous Waste and Hazardous Materials, 1988, 5(2): 129-143.
    [59]
    SMITH J M. Chemical Engineering Kinetics[M]. 3d ed. New York: McGraw-Hill, 1981
    [60]
    SHACKELFORD C D, DANIEL D E. Diffusion in saturated soil. I: background[J]. Journal of Geotechnical Engineering, 1991, 117(3): 467-484.
    [61]
    GODBEE H W, JOY D S. Assessment of the Loss of Radioactive Isotopes from Waste Solids to The Environment. Part Ⅰ. Background and Theory[M]. Oak Ridge: Oak Ridge National Laboratory, 19740.
  • Related Articles

    [1]Review on water disaster prevention of tunnels[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240972
    [2]A discrete element simulation method of clayey grain-cementing type methane hydrate bearing sediment accounting for pore size and physicochemical properties[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240845
    [3]DENG Shu-xin, WANG Ming-yang, LI Jie, ZHANG Guo-kai, WANG Zhen. Mechanism and simulation experiment of slip-type rock bursts triggered by impact disturbances[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2215-2221. DOI: 10.11779/CJGE202012007
    [4]WANG Lan-min. Mechanism and risk evaluation of sliding flow triggered by liquefaction of loess deposit during earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(1): 1-19. DOI: 10.11779/CJGE202001001
    [5]WU Zhi-jian, CHEN Yu-jin, WANG Qian, ZHAO Duo-yin, ZHANG Dan. Disaster-causing mechanism of Yongguang landslide under Minxian-Zhangxian Ms6.6 Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 165-168. DOI: 10.11779/CJGE2019S2042
    [6]DU Xiu-li, LI Yang, XU Cheng-shun, LU De-chun, XU Zi-gang, JIN Liu. Review on damage causes and disaster mechanism of Daikai subway station during 1995 Osaka-Kobe Earthquake[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(2): 223-236. DOI: 10.11779/CJGE201802002
    [7]WANG Kai-xing, PAN Yi-shan, DOU Lin-ming. Energy transfer in block-rock mass during propagation of pendulum-type waves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2309-2314. DOI: 10.11779/CJGE201612021
    [8]ZHANG Xu-hui, WU Xin, YU Jian-lin, HE Meng, GONG Xiao-nan. New slurry pressure type soil-nailing technology and its working mechanism[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(zk2): 227-232. DOI: 10.11779/CJGE2014S2038
    [9]ZHOU Jian, DU Qiang, LI Ye-xun, ZHANG Jiao. Centrifugal model tests on formation mechanism of landslide-type debris flows of cohesiveless soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(11): 2010-2017. DOI: 10.11779/CJGE201411006
    [10]LU Li, LI Liang, DENG Yu, HU Tian-shi, LI Xiao-xiao. Failure mechanism of mortar in front of bearing plate of compression type anchor cables[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(11): 2110-2116.
  • Cited by

    Periodical cited type(2)

    1. 顾维,郭芳,郭一鹏. 基于灰色系统的深厚软基上部路堤沉降预测研究. 武汉理工大学学报(交通科学与工程版). 2024(01): 110-114 .
    2. 孙中秋,朱明,贾飞扬,徐益飞. 矩形明洞回填黄土对落石冲击响应的数值模拟研究. 现代隧道技术. 2024(06): 111-117+128 .

    Other cited types(2)

Catalog

    Article views PDF downloads Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return