Citation: | WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. DOI: 10.11779/CJGE20220332 |
[1] |
ZIENKIEWICZ O C. Computational geomechanics with special reference to earthquake engineering[M]. Chichester: John Wiley, 1999.
|
[2] |
HUANG M S, YUE Z Q, THAM L G, et al. On the stable finite element procedures for dynamic problems of saturated porous media[J]. International Journal for Numerical Methods in Engineering, 2004, 61(9): 1421-1450. doi: 10.1002/nme.1115
|
[3] |
黄茂松, 魏星. 循环荷载饱和土动力学问题稳定有限元解法[J]. 岩土工程学报, 2005, 27(2): 173-177. doi: 10.3321/j.issn:1000-4548.2005.02.008
HUANG Maosong, WEI Xing. Stabilized finite elements for dynamic problems of saturated soil subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 173-177. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.02.008
|
[4] |
SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
|
[5] |
SOGA K, ALONSO E, YERRO A, et al. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 2016, 66(3): 248-273. doi: 10.1680/jgeot.15.LM.005
|
[6] |
JIN Y F, YIN Z Y, LI J, et al. A novel implicit coupled hydro-mechanical SPFEM approach for modelling of delayed failure of cut slope in soft sensitive clay[J]. Computers and Geotechnics, 2021, 140: 104474. doi: 10.1016/j.compgeo.2021.104474
|
[7] |
WANG L, ZHANG X, ZHANG S, et al. A generalized Hellinger-Reissner variational principle and its PFEM formulation for dynamic analysis of saturated porous media[J]. Computers and Geotechnics, 2021, 132: 103994. doi: 10.1016/j.compgeo.2020.103994
|
[8] |
BUI H H, NGUYEN G D. Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media[J]. Computers and Geotechnics, 2021, 138: 104315. doi: 10.1016/j.compgeo.2021.104315
|
[9] |
WEN X, ZHAO W, WAN D. An improved moving particle semi-implicit method for interfacial flows[J]. Applied Ocean Research, 2021, 117: 102963. doi: 10.1016/j.apor.2021.102963
|
[10] |
LIU X, WANG Y, LI D. Numerical simulation of the 1995 rainfall-induced Fei Tsui road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method[J]. Landslides, 2020, 17: 2755-2775. doi: 10.1007/s10346-020-01442-2
|
[11] |
YERRO A, ALONSO E E, PINYOL N M. Run-out of landslides in brittle soils[J]. Computers and Geotechnics, 2016, 80: 427-439. doi: 10.1016/j.compgeo.2016.03.001
|
[12] |
YERRO A, ALONSO E E, PINYOL N M. The material point method for unsaturated soils[J]. Géotechnique, 2015, 65(3): 201-217. doi: 10.1680/geot.14.P.163
|
[13] |
BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers and Geotechnics, 2015, 63: 199-214. doi: 10.1016/j.compgeo.2014.09.009
|
[14] |
张洪武, 王鲲鹏, 陈震. 基于物质点方法饱和多孔介质动力学模拟(Ⅰ): 耦合物质点方法[J]. 岩土工程学报, 2009, 31(10): 1505-1511. doi: 10.3321/j.issn:1000-4548.2009.10.005
ZHANG Hongwu, WANG Kunpeng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media (Ⅰ): coupling material point method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1505-1511. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.005
|
[15] |
张洪武, 王鲲鹏, 陈震. 基于物质点方法饱和多孔介质动力学模拟(Ⅱ): 饱和多孔介质与固体间动力接触分析[J]. 岩土工程学报, 2009, 31(11): 1672-1679. doi: 10.3321/j.issn:1000-4548.2009.11.005
ZHANG Hongwu, WANG Kunpeng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media (Ⅱ): dynamic contact analysis between saturated porous media and solid bodies[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1672-1679. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.005
|
[16] |
张洪武, 王鲲鹏. 基于物质点方法饱和多孔介质动力学模拟(Ⅲ): 两相物质点方法[J]. 岩土工程学报, 2010, 32(4): 507-513. http://www.cgejournal.com/cn/article/id/12438
ZHANG Hongwu, WANG Kunpeng. Material point method for dynamic analysis of saturated porous media (Ⅲ): two-phase material point method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 507-513. (in Chinese) http://www.cgejournal.com/cn/article/id/12438
|
[17] |
BECACHE E, RODRIGUEZ J, TSOGKA C. The finite element method with Lagrangian multipliers[J]. Numerische Mathematik, 1973, 20(3): 179-192. doi: 10.1007/BF01436561
|
[18] |
YANG J, YIN Z Y, LAOUAFA F, et al. Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(8): 1200-1218. doi: 10.1002/nag.3057
|
[19] |
YANG J, YIN Z Y, LAOUAFA F, et al. Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content[J]. Computers and Geotechnics, 2019, 111: 157-171. doi: 10.1016/j.compgeo.2019.03.011
|
[20] |
GAWIN D, SCHREFLER B A, GALINDO M. Thermo- hydro-mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996, 13(7): 113-143. doi: 10.1108/02644409610151584
|
[21] |
SCHREFLER B A, ZHAN X Y, SIMONI L. A coupled model for water flow, airflow and heat flow in deformable porous media[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1995, 5(6): 531-547.
|
[22] |
PAN S Y, YAMAGUCHI Y, SUPPASRI A, et al. MPM-FEM hybrid method for granular mass-water interaction problems[J]. Computational Mechanics, 2021, 68(1): 155-173. doi: 10.1007/s00466-021-02024-2
|
[23] |
HEINRICH J C, HUYAKORN P S, ZIENKIEWICZ O C, et al. An 'Upwind' finite element scheme for two-dimensional convective transport equation[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 131-143. doi: 10.1002/nme.1620110113
|
[24] |
HEINRICH J C, ZIENKIEWICZ O C. Quadratic finite element schemes for two-dimensional convective-transport problems[J]. International Journal for Numerical Methods in Engineering, 1977, 11(12): 1831-1844. doi: 10.1002/nme.1620111207
|
[25] |
LÖHNER R, MORGAN K, ZIENKIEWICZ O C. The solution of non-linear hyperbolic equation systems by the finite element method[J]. International Journal for Numerical Methods in Fluids, 1984, 4(11): 1043-1063. doi: 10.1002/fld.1650041105
|
[26] |
YAMAGUCHI Y, TAKASE S, MORIGUCHI S, et al. Solid-liquid coupled material point method for simulation of ground collapse with fluidization[J]. Computational Particle Mechanics, 2020, 7(2): 209-223. doi: 10.1007/s40571-019-00249-w
|
[27] |
KULARATHNA S, LIANG W J, ZHAO T C, et al. A semi-implicit material point method based on fractional-step method for saturated soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(10): 1405-1436. doi: 10.1002/nag.3207
|
[28] |
CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation, 1968, 22(104): 745-762. doi: 10.1090/S0025-5718-1968-0242392-2
|
[29] |
ZIENKIEWICZ O C, TAYLOR R L, NITHIARASU P. The Finite Element Method for Fluid Dynamics[M]. Oxford: Butterworth-Heinemann, 2014.
|
[30] |
GAN Y, SUN Z, CHEN Z, et al. Enhancement of the material point method using B-spline basis functions[J]. International Journal for Numerical Methods in Engineering, 2018, 113(3): 411-431. doi: 10.1002/nme.5620
|
[31] |
KARL T. Theoretical Soil Mechanics[M]. Hoboken: John Wiley & Sons, Inc., 1943.
|
[32] |
BREUER S. Quasi-static and dynamic behavior of saturated porous media with incompressible constituents[M]//Porous Media: Theory and Experiments. Dordrecht: Springer Netherlands, 1999.
|
[33] |
MARKERT B, HEIDER Y, EHLERS W. Comparison of monolithic and splitting solution schemes for dynamic porous media problems[J]. International Journal for Numerical Methods in Engineering. 2010, 82(11): 1341-1383.
|
[34] |
SOGA K, KULARATHNA S. Solving dynamic soil deformation-fluid flow coupling problems using material point method[M]// Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021.
|