• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. DOI: 10.11779/CJGE20220332
Citation: WANG Zhaonan, WANG Gang. Coupled material point method and characteristic finite element method for saturated porous media[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1094-1102. DOI: 10.11779/CJGE20220332

Coupled material point method and characteristic finite element method for saturated porous media

More Information
  • Received Date: March 23, 2022
  • Available Online: May 18, 2023
  • The material point method (MPM) is a common approach to analyze the large deformation of the saturated porous media. However, the pore pressure oscillations caused by the weak-compressibility fluid, and the complication to apply the pressure boundary are the main challenges in the conventional explicit MPM. In this study, a novel algorithm, which couples the MPM and characteristic finite element method (FEM) for the saturated porous media with the incompressible fluid, is proposed. Inspired by the characteristic-based split (CBS) method, the characteristic-based procedure is applied to the temporal discretion of the fluid momentum equation to avoid the instability induced by the convective term, and the projection method is introduced to split the velocity and pressure in the solid and fluid phases. Several numerical tests, involving the consolidation of one-dimensional saturated soil column and the wave propagation in two-dimensional elastic foundation, are conducted to examine the performance of the proposed method. The simulated results agree with the reference solutions, which indicates that the new algorithm can greatly overcome the water pressure oscillation of the consolidation problem in comparison with the explicit MPM.
  • [1]
    ZIENKIEWICZ O C. Computational geomechanics with special reference to earthquake engineering[M]. Chichester: John Wiley, 1999.
    [2]
    HUANG M S, YUE Z Q, THAM L G, et al. On the stable finite element procedures for dynamic problems of saturated porous media[J]. International Journal for Numerical Methods in Engineering, 2004, 61(9): 1421-1450. doi: 10.1002/nme.1115
    [3]
    黄茂松, 魏星. 循环荷载饱和土动力学问题稳定有限元解法[J]. 岩土工程学报, 2005, 27(2): 173-177. doi: 10.3321/j.issn:1000-4548.2005.02.008

    HUANG Maosong, WEI Xing. Stabilized finite elements for dynamic problems of saturated soil subjected to cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(2): 173-177. (in Chinese) doi: 10.3321/j.issn:1000-4548.2005.02.008
    [4]
    SULSKY D, CHEN Z, SCHREYER H L. A particle method for history-dependent materials[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 118(1/2): 179-196.
    [5]
    SOGA K, ALONSO E, YERRO A, et al. Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method[J]. Géotechnique, 2016, 66(3): 248-273. doi: 10.1680/jgeot.15.LM.005
    [6]
    JIN Y F, YIN Z Y, LI J, et al. A novel implicit coupled hydro-mechanical SPFEM approach for modelling of delayed failure of cut slope in soft sensitive clay[J]. Computers and Geotechnics, 2021, 140: 104474. doi: 10.1016/j.compgeo.2021.104474
    [7]
    WANG L, ZHANG X, ZHANG S, et al. A generalized Hellinger-Reissner variational principle and its PFEM formulation for dynamic analysis of saturated porous media[J]. Computers and Geotechnics, 2021, 132: 103994. doi: 10.1016/j.compgeo.2020.103994
    [8]
    BUI H H, NGUYEN G D. Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: From solid fracture to granular behaviour and multiphase flows in porous media[J]. Computers and Geotechnics, 2021, 138: 104315. doi: 10.1016/j.compgeo.2021.104315
    [9]
    WEN X, ZHAO W, WAN D. An improved moving particle semi-implicit method for interfacial flows[J]. Applied Ocean Research, 2021, 117: 102963. doi: 10.1016/j.apor.2021.102963
    [10]
    LIU X, WANG Y, LI D. Numerical simulation of the 1995 rainfall-induced Fei Tsui road landslide in Hong Kong: new insights from hydro-mechanically coupled material point method[J]. Landslides, 2020, 17: 2755-2775. doi: 10.1007/s10346-020-01442-2
    [11]
    YERRO A, ALONSO E E, PINYOL N M. Run-out of landslides in brittle soils[J]. Computers and Geotechnics, 2016, 80: 427-439. doi: 10.1016/j.compgeo.2016.03.001
    [12]
    YERRO A, ALONSO E E, PINYOL N M. The material point method for unsaturated soils[J]. Géotechnique, 2015, 65(3): 201-217. doi: 10.1680/geot.14.P.163
    [13]
    BANDARA S, SOGA K. Coupling of soil deformation and pore fluid flow using material point method[J]. Computers and Geotechnics, 2015, 63: 199-214. doi: 10.1016/j.compgeo.2014.09.009
    [14]
    张洪武, 王鲲鹏, 陈震. 基于物质点方法饱和多孔介质动力学模拟(Ⅰ): 耦合物质点方法[J]. 岩土工程学报, 2009, 31(10): 1505-1511. doi: 10.3321/j.issn:1000-4548.2009.10.005

    ZHANG Hongwu, WANG Kunpeng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media (Ⅰ): coupling material point method[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(10): 1505-1511. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.10.005
    [15]
    张洪武, 王鲲鹏, 陈震. 基于物质点方法饱和多孔介质动力学模拟(Ⅱ): 饱和多孔介质与固体间动力接触分析[J]. 岩土工程学报, 2009, 31(11): 1672-1679. doi: 10.3321/j.issn:1000-4548.2009.11.005

    ZHANG Hongwu, WANG Kunpeng, CHEN Zhen. Material point method for dynamic analysis of saturated porous media (Ⅱ): dynamic contact analysis between saturated porous media and solid bodies[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(11): 1672-1679. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.11.005
    [16]
    张洪武, 王鲲鹏. 基于物质点方法饱和多孔介质动力学模拟(Ⅲ): 两相物质点方法[J]. 岩土工程学报, 2010, 32(4): 507-513. http://www.cgejournal.com/cn/article/id/12438

    ZHANG Hongwu, WANG Kunpeng. Material point method for dynamic analysis of saturated porous media (Ⅲ): two-phase material point method[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(4): 507-513. (in Chinese) http://www.cgejournal.com/cn/article/id/12438
    [17]
    BECACHE E, RODRIGUEZ J, TSOGKA C. The finite element method with Lagrangian multipliers[J]. Numerische Mathematik, 1973, 20(3): 179-192. doi: 10.1007/BF01436561
    [18]
    YANG J, YIN Z Y, LAOUAFA F, et al. Three-dimensional hydromechanical modeling of internal erosion in dike-on-foundation[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2020, 44(8): 1200-1218. doi: 10.1002/nag.3057
    [19]
    YANG J, YIN Z Y, LAOUAFA F, et al. Analysis of suffusion in cohesionless soils with randomly distributed porosity and fines content[J]. Computers and Geotechnics, 2019, 111: 157-171. doi: 10.1016/j.compgeo.2019.03.011
    [20]
    GAWIN D, SCHREFLER B A, GALINDO M. Thermo- hydro-mechanical analysis of partially saturated porous materials[J]. Engineering Computations, 1996, 13(7): 113-143. doi: 10.1108/02644409610151584
    [21]
    SCHREFLER B A, ZHAN X Y, SIMONI L. A coupled model for water flow, airflow and heat flow in deformable porous media[J]. International Journal of Numerical Methods for Heat & Fluid Flow, 1995, 5(6): 531-547.
    [22]
    PAN S Y, YAMAGUCHI Y, SUPPASRI A, et al. MPM-FEM hybrid method for granular mass-water interaction problems[J]. Computational Mechanics, 2021, 68(1): 155-173. doi: 10.1007/s00466-021-02024-2
    [23]
    HEINRICH J C, HUYAKORN P S, ZIENKIEWICZ O C, et al. An 'Upwind' finite element scheme for two-dimensional convective transport equation[J]. International Journal for Numerical Methods in Engineering, 1977, 11(1): 131-143. doi: 10.1002/nme.1620110113
    [24]
    HEINRICH J C, ZIENKIEWICZ O C. Quadratic finite element schemes for two-dimensional convective-transport problems[J]. International Journal for Numerical Methods in Engineering, 1977, 11(12): 1831-1844. doi: 10.1002/nme.1620111207
    [25]
    LÖHNER R, MORGAN K, ZIENKIEWICZ O C. The solution of non-linear hyperbolic equation systems by the finite element method[J]. International Journal for Numerical Methods in Fluids, 1984, 4(11): 1043-1063. doi: 10.1002/fld.1650041105
    [26]
    YAMAGUCHI Y, TAKASE S, MORIGUCHI S, et al. Solid-liquid coupled material point method for simulation of ground collapse with fluidization[J]. Computational Particle Mechanics, 2020, 7(2): 209-223. doi: 10.1007/s40571-019-00249-w
    [27]
    KULARATHNA S, LIANG W J, ZHAO T C, et al. A semi-implicit material point method based on fractional-step method for saturated soil[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2021, 45(10): 1405-1436. doi: 10.1002/nag.3207
    [28]
    CHORIN A J. Numerical solution of the Navier-Stokes equations[J]. Mathematics of Computation, 1968, 22(104): 745-762. doi: 10.1090/S0025-5718-1968-0242392-2
    [29]
    ZIENKIEWICZ O C, TAYLOR R L, NITHIARASU P. The Finite Element Method for Fluid Dynamics[M]. Oxford: Butterworth-Heinemann, 2014.
    [30]
    GAN Y, SUN Z, CHEN Z, et al. Enhancement of the material point method using B-spline basis functions[J]. International Journal for Numerical Methods in Engineering, 2018, 113(3): 411-431. doi: 10.1002/nme.5620
    [31]
    KARL T. Theoretical Soil Mechanics[M]. Hoboken: John Wiley & Sons, Inc., 1943.
    [32]
    BREUER S. Quasi-static and dynamic behavior of saturated porous media with incompressible constituents[M]//Porous Media: Theory and Experiments. Dordrecht: Springer Netherlands, 1999.
    [33]
    MARKERT B, HEIDER Y, EHLERS W. Comparison of monolithic and splitting solution schemes for dynamic porous media problems[J]. International Journal for Numerical Methods in Engineering. 2010, 82(11): 1341-1383.
    [34]
    SOGA K, KULARATHNA S. Solving dynamic soil deformation-fluid flow coupling problems using material point method[M]// Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021.
  • Cited by

    Periodical cited type(9)

    1. 郭文远,李世民,王志岗,高涛,陶连金,谢霖,刘建功,刘华南. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究. 振动与冲击. 2025(01): 252-261+297 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 王志岗,陶连金,石城,史明,刘建功. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究. 土木工程学报. 2024(07): 37-50 .
    4. 翟之阳,王春瑶,路平. 地震作用下隧道不同位置单一及组合渗漏规律研究. 安徽建筑. 2024(09): 153-157 .
    5. 张治国,冯家伟,朱正国,赵其华,孙苗苗. 断层错动下非连续管道的力学响应分析. 岩土力学. 2024(11): 3221-3234 .
    6. 王天强,耿萍,何川,王琦. 穿越活动断裂带螺旋隧道抗错性能模型试验研究. 岩石力学与工程学报. 2024(11): 2738-2752 .
    7. 张君臣,李伟平,晏启祥,张伟列,孙明辉,陈文宇. 含有空心榫的盾构隧道环缝接头柔性特征研究. 土木工程学报. 2024(12): 104-117 .
    8. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    9. 朱合华,禹海涛,韩富强,卫一博,袁勇. 穿越活动断层隧道抗震韧性设计理念与关键问题. 中国公路学报. 2023(11): 193-204 .

    Other cited types(2)

Catalog

    Article views (332) PDF downloads (89) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return