Citation: | LIU Fengtao, ZHOU Xiwen, ZHANG Chengbo, DAI Beibing, MO Hongyan. Elastoplastic second-order cone programming based on mixed elements using a two-level mesh repartitioning scheme[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1045-1053. DOI: 10.11779/CJGE20220317 |
[1] |
SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer, 1998.
|
[2] |
郑宏, 张谭, 王秋生. 弹塑性有限元分析中几个难点问题的一揽子方案[J]. 岩土力学, 2021, 42(2): 301-314. doi: 10.16285/j.rsm.2020.1393
ZHENG Hong, ZHANG Tan, WANG Qiusheng. One package of schemes for some difficult issues in finite element plasticity analysis[J]. Rock and Soil Mechanics, 2021, 42(2): 301-314. (in Chinese) doi: 10.16285/j.rsm.2020.1393
|
[3] |
CAPURSO M, MAIER G. Incremental elastoplastic analysis and quadratic optimization[J]. Meccanica, 1970, 5(2): 107-116. doi: 10.1007/BF02134214
|
[4] |
李建宇, 张洪武. 解Drucker-Prager塑性问题的二阶锥互补法[J]. 计算力学学报, 2014, 31(3): 322-327. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201403007.htm
LI Jianyu, ZHANG Hongwu. A second order cone complementarity approach for Drucker-Prager plasticity problems[J]. Chinese Journal of Computational Mechanics, 2014, 31(3): 322-327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201403007.htm
|
[5] |
KRABBENHOFT K, LYAMIN A V, SLOAN S W, et al. An interior-point algorithm for elastoplasticity[J]. International Journal for Numerical Methods in Engineering, 2007, 69(3): 592-626. doi: 10.1002/nme.1771
|
[6] |
KRABBENHØFT K. A variational principle of elastoplasticity and its application to the modeling of frictional materials[J]. International Journal of Solids and Structures, 2009, 46(3/4): 464-479.
|
[7] |
KRABBENHOFT K, LYAMIN A V. Computational cam clay plasticity using second-order cone programming[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 209-212: 239-249. doi: 10.1016/j.cma.2011.11.006
|
[8] |
KRABBENHØFT K, LYAMIN A V, SLOAN S W. Formulation and solution of some plasticity problems as conic programs[J]. International Journal of Solids and Structures, 2007, 44(5): 1533–1549. doi: 10.1016/j.ijsolstr.2006.06.036
|
[9] |
王冬勇, 陈曦, 吕彦楠, 等. 基于二阶锥规划理论的有限元强度折减法及应用[J]. 岩土工程学报, 2019, 41(3): 457-465. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17707.shtml
WANG Dongyong, CHEN Xi, LÜ Yuzhen, et al. Ultimate bearing capacity analysis of shallow strip footing based on second order cone programming optimized incremental loading finite element method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 457-465. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17707.shtml
|
[10] |
王冬勇, 陈曦, 于玉贞, 等. 基于二阶锥规划有限元增量加载法的条形浅基础极限承载力分析[J]. 岩土力学, 2019, 40(12): 4890-4896, 4924. doi: 10.16285/j.rsm.2018.1764
WANG Dongyong, CHEN Xi, YU Yuzhen, et al. Ultimate bearing capacity analysis of shallow strip footing based on second-order cone programming optimized incremental loading finite element method[J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896, 4924. (in Chinese) doi: 10.16285/j.rsm.2018.1764
|
[11] |
WANG L, ZHANG X, ZHANG S, TINTI S. A generalized Hellinger-Reissner variational principle and its PFEM formulation for dynamic analysis of saturated porous media[J]. Computers and Geotechnics, 2021, 132: 103994. doi: 10.1016/j.compgeo.2020.103994
|
[12] |
ZHANG X, SHENG D C, SLOAN S W, et al. Second-order cone programming formulation for consolidation analysis of saturated porous media[J]. Computational Mechanics, 2016, 58(1): 29-43. doi: 10.1007/s00466-016-1280-4
|
[13] |
ZHANG X, SHENG D C, SLOAN S W, et al. Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity[J]. International Journal for Numerical Methods in Engineering, 2017, 112(8): 963-989. doi: 10.1002/nme.5539
|
[14] |
ZHANG X, SLOAN S W, OÑATE E. Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1806-1822. doi: 10.1002/nag.2815
|
[15] |
NAGTEGAAL J C, PARKS D M, RICE J R. On numerically accurate finite element solutions in the fully plastic range[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 4(2): 153-177. doi: 10.1016/0045-7825(74)90032-2
|
[16] |
CHEN J S, WU C T, YOON S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods[J]. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466. doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
|
[17] |
LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems[J]. Computational Mechanics, 2007, 39(6): 859-877. doi: 10.1007/s00466-006-0075-4
|
[18] |
ZENG W, LIU G R. Smoothed finite element methods (S-FEM): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 397-435.
|
[19] |
LIU G R, ZHANG G Y. Edge-based smoothed point interpolation methods[J]. International Journal of Computational Methods, 2008, 5(4): 621-646. doi: 10.1142/S0219876208001662
|
[20] |
LIU G R, NGUYEN-THOI T, NGUYEN-XUAN H, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems[J]. Computers & structures, 2009, 87(1-2): 14-26.
|
[21] |
WU C T, HU W. A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses[J]. Computational Mechanics, 2012, 50(1): 1-18.
|
[22] |
NGUYEN-XUAN H, WU C T, LIU G R. An adaptive selective ES-FEM for plastic collapse analysis[J]. European Journal of Mechanics - A/Solids, 2016, 58: 278-290.
|
[23] |
ZHANG X, KRABBENHOFT K, PEDROSO D M, et al. Particle finite element analysis of large deformation and granular flow problems[J]. Computers and Geotechnics, 2013, 54: 133-142.
|
[24] |
MENG J J, ZHANG X, HUANG J S, et al. A smoothed finite element method using second-order cone programming[J]. Computers and Geotechnics, 2020, 123: 103547.
|
[25] |
ANDERSEN E D, ROOS C, TERLAKY T. On implementing a primal-dual interior-point method for conic quadratic optimization[J]. Mathematical Programming, Springer, 2003, 95(2): 249-277.
|
[26] |
MOSEK ApS. The MOSEK optimization tollbox for MATLAB Manual Version 9.2(Revision 35)[R]. 2021.
|
[27] |
ZHOU X W, LIU F T, JIN Y F, YIN Z Y, et al. A volumetric locking-free stable node-based smoothed finite element method for geomechanics[J]. Computers and Geotechnics, 2022, 149: 104856.
|
[28] |
TERZAGHI K T. Theoretical Soil Mechanics[M]. New York: John Wiley & Sons Inc, 1943.
|
[29] |
SLOAN S W, ASSADI A, PURUSHOTHAMAN N. Undrained stability of a trapdoor[J]. Géotechnique, 1990, 40(1): 45-62.
|
[30] |
SHIAU J, HASSAN M M. Undrained stability of active and passive trapdoors[J]. Geotechnical Research, 2020, 7(1): 40-48.
|