• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Fengtao, ZHOU Xiwen, ZHANG Chengbo, DAI Beibing, MO Hongyan. Elastoplastic second-order cone programming based on mixed elements using a two-level mesh repartitioning scheme[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1045-1053. DOI: 10.11779/CJGE20220317
Citation: LIU Fengtao, ZHOU Xiwen, ZHANG Chengbo, DAI Beibing, MO Hongyan. Elastoplastic second-order cone programming based on mixed elements using a two-level mesh repartitioning scheme[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1045-1053. DOI: 10.11779/CJGE20220317

Elastoplastic second-order cone programming based on mixed elements using a two-level mesh repartitioning scheme

More Information
  • Received Date: March 22, 2022
  • Available Online: May 18, 2023
  • The mathematical programming approach of elastoplastic incremental analysis is one of the effective ways to analyze deformation and strength problems in geotechnical engineering and has unique advantages in dealing with the complex problems such as non-smooth yield surface, contact conditions and multi-surface plasticity. To further simplify the computational framework and overcome the volumetric locking, a novel mixed constant stress-smoothed strain three-node triangle element with a two-level mesh repartitioning scheme is proposed to discretize the generalized Hellinger-Reissner (GHR) variational principle, the boundary value problem of elastoplastic problem can be reformulated as a conic programming problem under the constraint of the associated flow rule, and the cohesive-frictional contact condition is treated as a set of conic constraints and introduced into the conic programming problem of the elastoplastic incremental analysis. Then, an efficient primal-dual interior point algorithm is used to solve it. Finally, the proposed method is applied to two classical geotechnical engineering problems. The results show that the new method is superior to the traditional mixed six-node triangular element in terms of the computational efficiency, convergence and accuracy.
  • [1]
    SIMO J C, HUGHES T J R. Computational Inelasticity[M]. New York: Springer, 1998.
    [2]
    郑宏, 张谭, 王秋生. 弹塑性有限元分析中几个难点问题的一揽子方案[J]. 岩土力学, 2021, 42(2): 301-314. doi: 10.16285/j.rsm.2020.1393

    ZHENG Hong, ZHANG Tan, WANG Qiusheng. One package of schemes for some difficult issues in finite element plasticity analysis[J]. Rock and Soil Mechanics, 2021, 42(2): 301-314. (in Chinese) doi: 10.16285/j.rsm.2020.1393
    [3]
    CAPURSO M, MAIER G. Incremental elastoplastic analysis and quadratic optimization[J]. Meccanica, 1970, 5(2): 107-116. doi: 10.1007/BF02134214
    [4]
    李建宇, 张洪武. 解Drucker-Prager塑性问题的二阶锥互补法[J]. 计算力学学报, 2014, 31(3): 322-327. https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201403007.htm

    LI Jianyu, ZHANG Hongwu. A second order cone complementarity approach for Drucker-Prager plasticity problems[J]. Chinese Journal of Computational Mechanics, 2014, 31(3): 322-327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSJG201403007.htm
    [5]
    KRABBENHOFT K, LYAMIN A V, SLOAN S W, et al. An interior-point algorithm for elastoplasticity[J]. International Journal for Numerical Methods in Engineering, 2007, 69(3): 592-626. doi: 10.1002/nme.1771
    [6]
    KRABBENHØFT K. A variational principle of elastoplasticity and its application to the modeling of frictional materials[J]. International Journal of Solids and Structures, 2009, 46(3/4): 464-479.
    [7]
    KRABBENHOFT K, LYAMIN A V. Computational cam clay plasticity using second-order cone programming[J]. Computer Methods in Applied Mechanics and Engineering, 2012, 209-212: 239-249. doi: 10.1016/j.cma.2011.11.006
    [8]
    KRABBENHØFT K, LYAMIN A V, SLOAN S W. Formulation and solution of some plasticity problems as conic programs[J]. International Journal of Solids and Structures, 2007, 44(5): 1533–1549. doi: 10.1016/j.ijsolstr.2006.06.036
    [9]
    王冬勇, 陈曦, 吕彦楠, 等. 基于二阶锥规划理论的有限元强度折减法及应用[J]. 岩土工程学报, 2019, 41(3): 457-465. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17707.shtml

    WANG Dongyong, CHEN Xi, LÜ Yuzhen, et al. Ultimate bearing capacity analysis of shallow strip footing based on second order cone programming optimized incremental loading finite element method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(3): 457-465. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17707.shtml
    [10]
    王冬勇, 陈曦, 于玉贞, 等. 基于二阶锥规划有限元增量加载法的条形浅基础极限承载力分析[J]. 岩土力学, 2019, 40(12): 4890-4896, 4924. doi: 10.16285/j.rsm.2018.1764

    WANG Dongyong, CHEN Xi, YU Yuzhen, et al. Ultimate bearing capacity analysis of shallow strip footing based on second-order cone programming optimized incremental loading finite element method[J]. Rock and Soil Mechanics, 2019, 40(12): 4890-4896, 4924. (in Chinese) doi: 10.16285/j.rsm.2018.1764
    [11]
    WANG L, ZHANG X, ZHANG S, TINTI S. A generalized Hellinger-Reissner variational principle and its PFEM formulation for dynamic analysis of saturated porous media[J]. Computers and Geotechnics, 2021, 132: 103994. doi: 10.1016/j.compgeo.2020.103994
    [12]
    ZHANG X, SHENG D C, SLOAN S W, et al. Second-order cone programming formulation for consolidation analysis of saturated porous media[J]. Computational Mechanics, 2016, 58(1): 29-43. doi: 10.1007/s00466-016-1280-4
    [13]
    ZHANG X, SHENG D C, SLOAN S W, et al. Lagrangian modelling of large deformation induced by progressive failure of sensitive clays with elastoviscoplasticity[J]. International Journal for Numerical Methods in Engineering, 2017, 112(8): 963-989. doi: 10.1002/nme.5539
    [14]
    ZHANG X, SLOAN S W, OÑATE E. Dynamic modelling of retrogressive landslides with emphasis on the role of clay sensitivity[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2018, 42(15): 1806-1822. doi: 10.1002/nag.2815
    [15]
    NAGTEGAAL J C, PARKS D M, RICE J R. On numerically accurate finite element solutions in the fully plastic range[J]. Computer Methods in Applied Mechanics and Engineering, 1974, 4(2): 153-177. doi: 10.1016/0045-7825(74)90032-2
    [16]
    CHEN J S, WU C T, YOON S, et al. A stabilized conforming nodal integration for Galerkin mesh-free methods[J]. International Journal for Numerical Methods in Engineering, 2001, 50(2): 435-466. doi: 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A
    [17]
    LIU G R, DAI K Y, NGUYEN T T. A smoothed finite element method for mechanics problems[J]. Computational Mechanics, 2007, 39(6): 859-877. doi: 10.1007/s00466-006-0075-4
    [18]
    ZENG W, LIU G R. Smoothed finite element methods (S-FEM): an overview and recent developments[J]. Archives of Computational Methods in Engineering, 2018, 25(2): 397-435.
    [19]
    LIU G R, ZHANG G Y. Edge-based smoothed point interpolation methods[J]. International Journal of Computational Methods, 2008, 5(4): 621-646. doi: 10.1142/S0219876208001662
    [20]
    LIU G R, NGUYEN-THOI T, NGUYEN-XUAN H, et al. A node-based smoothed finite element method (NS-FEM) for upper bound solutions to solid mechanics problems[J]. Computers & structures, 2009, 87(1-2): 14-26.
    [21]
    WU C T, HU W. A two-level mesh repartitioning scheme for the displacement-based lower-order finite element methods in volumetric locking-free analyses[J]. Computational Mechanics, 2012, 50(1): 1-18.
    [22]
    NGUYEN-XUAN H, WU C T, LIU G R. An adaptive selective ES-FEM for plastic collapse analysis[J]. European Journal of Mechanics - A/Solids, 2016, 58: 278-290.
    [23]
    ZHANG X, KRABBENHOFT K, PEDROSO D M, et al. Particle finite element analysis of large deformation and granular flow problems[J]. Computers and Geotechnics, 2013, 54: 133-142.
    [24]
    MENG J J, ZHANG X, HUANG J S, et al. A smoothed finite element method using second-order cone programming[J]. Computers and Geotechnics, 2020, 123: 103547.
    [25]
    ANDERSEN E D, ROOS C, TERLAKY T. On implementing a primal-dual interior-point method for conic quadratic optimization[J]. Mathematical Programming, Springer, 2003, 95(2): 249-277.
    [26]
    MOSEK ApS. The MOSEK optimization tollbox for MATLAB Manual Version 9.2(Revision 35)[R]. 2021.
    [27]
    ZHOU X W, LIU F T, JIN Y F, YIN Z Y, et al. A volumetric locking-free stable node-based smoothed finite element method for geomechanics[J]. Computers and Geotechnics, 2022, 149: 104856.
    [28]
    TERZAGHI K T. Theoretical Soil Mechanics[M]. New York: John Wiley & Sons Inc, 1943.
    [29]
    SLOAN S W, ASSADI A, PURUSHOTHAMAN N. Undrained stability of a trapdoor[J]. Géotechnique, 1990, 40(1): 45-62.
    [30]
    SHIAU J, HASSAN M M. Undrained stability of active and passive trapdoors[J]. Geotechnical Research, 2020, 7(1): 40-48.
  • Cited by

    Periodical cited type(9)

    1. 郭文远,李世民,王志岗,高涛,陶连金,谢霖,刘建功,刘华南. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究. 振动与冲击. 2025(01): 252-261+297 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 王志岗,陶连金,石城,史明,刘建功. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究. 土木工程学报. 2024(07): 37-50 .
    4. 翟之阳,王春瑶,路平. 地震作用下隧道不同位置单一及组合渗漏规律研究. 安徽建筑. 2024(09): 153-157 .
    5. 张治国,冯家伟,朱正国,赵其华,孙苗苗. 断层错动下非连续管道的力学响应分析. 岩土力学. 2024(11): 3221-3234 .
    6. 王天强,耿萍,何川,王琦. 穿越活动断裂带螺旋隧道抗错性能模型试验研究. 岩石力学与工程学报. 2024(11): 2738-2752 .
    7. 张君臣,李伟平,晏启祥,张伟列,孙明辉,陈文宇. 含有空心榫的盾构隧道环缝接头柔性特征研究. 土木工程学报. 2024(12): 104-117 .
    8. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    9. 朱合华,禹海涛,韩富强,卫一博,袁勇. 穿越活动断层隧道抗震韧性设计理念与关键问题. 中国公路学报. 2023(11): 193-204 .

    Other cited types(2)

Catalog

    Article views (195) PDF downloads (33) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return