• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Zhi-qiang, DAI Fu-chu, MIN Hong, TU Xin-bin. Field tests on irrigation infiltration in thick loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 569-575. DOI: 10.11779/CJGE202203019
Citation: ZHAO Zhi-qiang, DAI Fu-chu, MIN Hong, TU Xin-bin. Field tests on irrigation infiltration in thick loess[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 569-575. DOI: 10.11779/CJGE202203019

Field tests on irrigation infiltration in thick loess

More Information
  • Received Date: December 21, 2020
  • Available Online: September 22, 2022
  • Frequent irrigation activities have triggered numerous landslide hazards along the margins of the loess platform. For a better understanding of the process of irrigation water penetrating through stratified loess sediments, a full-scale field infiltration experiment with a diameter of 20 m is conducted on the South Jingyang tableland, Shaanxi Province, China. The amount of irrigation water, volumetric water content, matric suction and pore-air pressure are monitored to reveal the infiltration process of loess sediments. The monitoring results can be drawn as follows: (1) The propagation of wetting front is more than 11 m under the ponding condition. The infiltration rate is initially high, then decreases gradually and finally approaches a constant value less than the saturated hydraulic conductivity of the soil in shallow depth. (2) The vertical fractures parallelling to the edge of the tableland in Malan loess are revealed through vertical shaft, which has an aperture of less than 15 mm. The preferential flow is observed in the preferential path of the Malan loess layer. (3) The first paleosol layer (S1) is proved to be permeable, and a transient perched water with a waterhead less than 44 cm is developed above the lower part of S1. (4) The pore-air in soil is compressed, and an air entrapment ahead of wetting front is observed during wetting period. The maximum pore-air pressure measured in loess sediments varies from 1.1 kPa to 4.3 kPa.
  • [1]
    彭建兵, 林鸿州, 王启耀, 等. 黄土地质灾害研究中的关键问题与创新思路[J]. 工程地质学报, 2014, 22(4): 684–691. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm

    PENG Jian-bing, LIN Hong-zhou, WANG Qi-yao, et al. The critical issues and creative concepts in mitigation research of loess geological hazards[J]. Journal of Engineering Geology, 2014, 22(4): 684–691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ201404018.htm
    [2]
    许领, 戴福初, 闵弘, 等. 泾阳南塬黄土滑坡类型与发育特征[J]. 地球科学, 2010, 35(1): 155–160. https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001019.htm

    XU Ling, DAI Fu-chu, MIN Hong, et al. Loess landslide types and topographic features at South Jingyang Plateau, China[J]. Earth Science (Journal of China University of Geosciences), 2010, 35(1): 155–160. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQKX201001019.htm
    [3]
    LU N, LIKOS W J. Unsaturated Soil Mechanics[M]. New York: J Wiley, 2004.
    [4]
    朱才辉, 李宁. 降雨对沟谷状黄土高填方地基增湿影响研究[J]. 岩土工程学报, 2020, 42(5): 845–854. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18196.shtml

    ZHU Cai-hui, LI Ning. Moisture effects of high-fill embankment due to rainfall infiltration in loess gully region[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(5): 845–854. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18196.shtml
    [5]
    雷祥义. 陕西泾阳南塬黄土滑坡灾害与引水灌溉的关系[J]. 工程地质学报, 1995, 3(1): 56–64. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ501.006.htm

    LEI Xiang-yi. The hazards of loess landslides in the southern tableland of Jingyang County, Shaanxi and their relationship with the channel water into fields[J]. Journal of Engineering Geology, 1995, 3(1): 56–64. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ501.006.htm
    [6]
    金艳丽, 戴福初. 灌溉诱发黄土滑坡机理研究[J]. 岩土工程学报, 2007, 29(10): 1493–1499. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12636.shtml

    JIN Yan-li, DAI Fu-chu. The mechanism of irrigation-induced landslides of loess[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(10): 1493–1499. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract12636.shtml
    [7]
    许强, 亓星, 修德皓, 等. 突发型黄土滑坡的临界水位研究—以甘肃黑方台黄土滑坡为例[J]. 水利学报, 2019, 50(3): 315–322. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201903004.htm

    XU Qiang, QI Xing, XIU De-hao, et al. Critical water level of abrust loess landslides: a case study in Heifangtai, Gansu Province[J]. Journal of Hydraulic Engineering, 2019, 50(3): 315–322. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201903004.htm
    [8]
    马耀光, 李书琴, 李世清, 等. 灌溉条件下黄土层的水盐效应研究[J]. 西北农林科技大学学报(自然科学版), 2003(5): 64–68. https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200305015.htm

    MA Yao-guang, LI Shu-qin, XU Yong-gong, et al. Effects of irrigation on water and salt in loess layer[J]. Jour of North west Sci-Tech Univ of Agri and For (Nat Sci Ed), 2003, 31(5): 64–68. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-XBNY200305015.htm
    [9]
    吴玮江, 王念秦. 甘肃滑坡灾害[M]. 兰州: 兰州大学出版社, 2006.

    WU Wei-jiang, WANG Nian-qin. Landslide Hazards in Gansu[M]. Lanzhou: Lanzhou University Press, 2006. (in Chinese)
    [10]
    张先林, 许强, 彭大雷, 等. 基于三维高密度电法的黄土灌溉水入渗方式研究[J]. 地球物理学进展, 2019, 34(2): 840–848. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201902055.htm

    ZHANG Xian-lin, XU Qiang, PENG Da-lei, et al. Study on the infiltration mode of irrigation water in loess based on three-dimensional high-density electrical method[J]. Progress in Geophysics, 2019, 34(2): 840–848. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWJ201902055.htm
    [11]
    张常亮, 李萍, 李同录, 等. 黄土中降雨入渗规律的现场监测研究[J]. 水利学报, 2014, 45(6): 728–734. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406012.htm

    ZHANG Chang-liang, LI Ping, LI Tong-lu, et al. In-situ observation on rainfall infiltration in loess[J]. Journal of Hydraulic Engineering, 2014, 45(6): 728–734. (in Chinese)) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201406012.htm
    [12]
    姚志华, 黄雪峰, 陈正汉, 等. 兰州地区大厚度自重湿陷性黄土场地浸水试验综合观测研究[J]. 岩土工程学报, 2012, 34(1): 65–74. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14490.shtml

    YAO Zhi-hua, HUANG Xue-feng, CHEN Zheng-han, et al. Comprehensive soaking tests on self-weight collapse loess with heavy section in Lanzhou region[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(1): 65–74. (in Chinese)) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14490.shtml
    [13]
    WANG W, WANG Y, SUN Q, et al. Spatial variation of saturated hydraulic conductivity of a loess slope in the South Jingyang Plateau, China[J]. Engineering Geology, 2018, 236: 70–78.
    [14]
    HAMMECKER C, ANTONINO A C D, et al. Experimental and numerical study of water flow in soil under irrigation in northern Senegal: evidence of air entrapment[J]. European Journal of Soil Science, 2003, 54: 491–503.
    [15]
    WANG Z, FEYEN J, VAN Genuchten, et al. Air entrapment effects on infiltration rate and flow instability[J]. Water Resources Research, 1998, 34: 213–222.
  • Cited by

    Periodical cited type(2)

    1. 冯笑瑞,朱兴华,孙恒飞,俱量,温瑞祥,肖永玖. 泾阳浅层黄土细微观孔隙结构试验. 水文地质工程地质. 2024(06): 138-148 .
    2. 张满想,陈军锋,臧红飞,刘萍,郑秀清. 黄土台塬区不同时代黄土水分入渗特性和迁移规律的试验研究. 节水灌溉. 2023(02): 51-56+64 .

    Other cited types(4)

Catalog

    Article views (227) PDF downloads (200) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return