• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HE Hao-dian, TANG Xin-wei, YAN Zhen-rui, ZHENG Huai-qiu, LI Dai-mao. In-situ tests and numerical analysis of composite lining structures with joint bearing[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 560-568. DOI: 10.11779/CJGE202203018
Citation: HE Hao-dian, TANG Xin-wei, YAN Zhen-rui, ZHENG Huai-qiu, LI Dai-mao. In-situ tests and numerical analysis of composite lining structures with joint bearing[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 560-568. DOI: 10.11779/CJGE202203018

In-situ tests and numerical analysis of composite lining structures with joint bearing

More Information
  • Received Date: May 25, 2021
  • Available Online: September 22, 2022
  • An in-situ test on composite linings is carried out to investigate the characteristics of joint bearing performance under internal pressure. Based on the three-dimensional finite element refinement model, the process of structural failure and the deformation of the structures under various surrounding rock strengths are analyzed. The results show that the combination of rubber bladder and steel reaction frame provides a good simulation of internal water pressure in large-diameter section. The optical fiber sensing technology enables continuous monitoring of tunnel structures at full cross-section. The joint bearing effects of the composite linings are obvious, and the structures show a tendency of "transverse ellipse" with outward expansion and tension under internal pressure. The concrete cracking of the inner linings is the controlling factor for the decrease of structural bearing capacity. The structures reach normal use limit state and the joint bearing performance decreases when the difference of the internal and external pressures exceeds 0.40 MPa. As the strength of surrounding rock increases, the deformation and internal force response of the structures decrease, and the effects of surrounding rock to share the internal water pressure are enhanced, so the thickness of the linings can be appropriately optimized.
  • [1]
    DADASHI E, NOORZAD A, SHAHRIAR K, et al. Hydro-mechanical interaction analysis of reinforced concrete lining in pressure tunnels[J]. Tunnelling and Underground Space Technology, 2017, 69: 125–132. doi: 10.1016/j.tust.2017.06.006
    [2]
    张弢, 王东黎, 王雷. 盾构管片钢筋混凝土内衬大型输水隧洞结构研究[J]. 水利水电技术, 2009, 40(7): 62–65. https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200907016.htm

    ZHANG Tao, WANG Dong-li, WANG Lei. Study on large scale water conveyance tunnel structure with shielding segment steel reinforced concrete inner lining[J]. Water Resources and Hydropower Engineering, 2009, 40(7): 62–65. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SJWJ200907016.htm
    [3]
    温晓英, 程子悦, 李琛, 等. 西江引水工程盾构输水隧洞衬砌形式的选择与设计[J]. 中国给水排水, 2012, 28(10): 1–4. https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201210002.htm

    WEN Xiao-ying, CHENG Zi-yue, LI Tan, et al. Selection and design of shield tunnel lining in Guangzhou xijiang water diversion project[J]. China Water & Wastewater, 2012, 28(10): 1–4. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSPS201210002.htm
    [4]
    村上博智, 小泉淳. 二次覆工で補強されたシールドセグメントリングの挙動について[C]// 土木学会論文集, 1987: 85–93.

    Atsushi KOIZUMI, Hirotomo MURAKAMI. Behavior of shield segment ring reinforced by secondary lining[C]// Civil Engineering Society Papers, 1987: 85–93. (in Japanese)
    [5]
    佐久門彰三, 石田智郎. 一次覆工・二次覆工間のせん断特性を考慮したシールドトンネルの軸剛性評価[C]// 土木学会论文集, 1990: 251–259.

    Shouzou SAKUMA, Tomoaki ISHIDA. Effects of the axial stiffness of a shield tunnel including effects of shearing interaction between primary and secondary linings[C]// Civil Engineering Society Papers, 1990: 251–259. (in Japanese)
    [6]
    高松伸行, 村上博智, 小泉淳. 二次覆工されたシールドトンネル軸方向曲げ特性のモデル化について[C]// 土木学会論文集, 1993: 43–54.

    NOBUYUKI TAKAMATSU, Hirotomo MURAKAMI, Atsushi KOIZUMI. Study on the analytical model on bending behavior in longitudinal direction of shield tunnel with secondary lining[C]// Civil Engineering Society Papers, 1993: 43–54. (in Japanese)
    [7]
    段国学, 许晖. 穿黄隧洞衬砌1: 1仿真模型应力观测成果分析[J]. 人民长江, 2011, 42(8): 87–91. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201108016.htm

    DUAN Guo-xue, XU Hui. Analysis on stress observation results of full-scaled lining simulation model of tunnel crossing Yellow River[J]. Yangtze River, 2011, 42(8): 87–91. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201108016.htm
    [8]
    谢小玲, 龚亚琦, 苏海东, 等. 软弱围岩中的新型双层复合衬砌的受力特性研究及渗水风险分析[J]. 岩石力学与工程学报, 2013, 32(9): 1791–1798. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309010.htm

    XIE Xiao-ling, GONG Ya-qi, SU Hai-dong, et al. Mechanical Characteristics and Seepage Risk Analysis of Double Composite Linings in Soft Surrounding Rocks[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, 32(9): 1791–1798. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201309010.htm
    [9]
    YANG F, CAO S R, QIN G. Mechanical behavior of two kinds of prestressed composite linings: a case study of the Yellow River Crossing Tunnel in China[J]. Tunnelling and Underground Space Technology, 2018, 79: 96–109. doi: 10.1016/j.tust.2018.04.036
    [10]
    徐传堡. 复合衬砌盾构输水隧洞的简化计算方法及有限元分析[D]. 广州: 华南理工大学, 2018.

    XU Chuan-bao. Simplified Calculation Method and Finite Element Analysis of Composite Lining Shield Tunnel for Water Conveyance[D]. Guangzhou: South China University of Technology, 2018. (in Chinese)
    [11]
    王士民, 于清洋, 彭博, 等. 基于塑性损伤的盾构隧道双层衬砌三维实体非连续接触模型研究[J]. 岩石力学与工程学报, 2016, 35(2): 303–311. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602012.htm

    WANG Shi-min, YU Qing-yang, PENG Bo, et al. Three-dimensional discontinuous contact model for shield tunnels with double-layer lining based on plastic-damage model[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(2): 303–311. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201602012.htm
    [12]
    李代茂, 严振瑞, 唐欣薇, 等. 叠合式衬砌结构抗外载特性足尺试验与数值研究[J]. 岩土工程学报, 2020, 42(12): 2257–2263. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18374.shtml

    LI Dai-mao, YAN Zhen-rui, TANG Xin-wei, et al. Full-scale model tests and numerical investigations on bearing characteristics of superimposed lining structures under external loads[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(12): 2257–2263. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract18374.shtml
    [13]
    小泉淳. 盾构隧道管片设计: 从容许应力设计法到极限状态设计法[M]. 官林星, 译. 北京: 中国建筑工业出版社, 2012.

    ATSUSHI KOIZUMI. The Segment Design of Shield Tunneling[M]. GUAN Lin-xing, trans. Beijing: China Architecture & Building Press, 2012. (in Chinese)
    [14]
    水工混凝土结构设计规范: SL 191—2008[S]. 2009.

    Design Code for Hydraulic Concrete Structures: SL 191—2008[S]. Beijing: China Water Power Press, 2009. (in Chinese)
  • Cited by

    Periodical cited type(5)

    1. 吴鹏,陈健,崔岚,徐晨. 复合式衬砌隧道模型试验及其承载特性研究. 岩土工程学报. 2024(S1): 102-106 . 本站查看
    2. 苏凯,陶军,徐振东,王博士,朱洪泽. 穿越城区隧洞分离式衬砌承载机理及性能优化研究. 水利学报. 2023(01): 54-67 .
    3. 杨灵. 锚网喷注联合支护技术在硐室修复加固中的应用. 工程建设. 2023(02): 36-42 .
    4. 陆岸典,唐欣薇,严振瑞,麦胜文,姚广亮. 复合衬砌结构的预应力混凝土配比试验研究. 水力发电学报. 2022(11): 149-158 .
    5. 朱悦悦,刘成. 输水隧洞灌浆式预应力衬砌结构承载机理研究. 水利水运工程学报. 2022(06): 146-155 .

    Other cited types(5)

Catalog

    Article views (222) PDF downloads (101) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return