• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yue, YE Wei-min. Water retention characteristics of earthen heritage soil during desiccation considering volumetric change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 456-463. DOI: 10.11779/CJGE202203007
Citation: ZHANG Yue, YE Wei-min. Water retention characteristics of earthen heritage soil during desiccation considering volumetric change[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 456-463. DOI: 10.11779/CJGE202203007

Water retention characteristics of earthen heritage soil during desiccation considering volumetric change

More Information
  • Received Date: January 16, 2021
  • Available Online: September 22, 2022
  • As the most common pathology in earthen heritages, cracking and exfoliation of surface crusts severely threaten their long-term conservation. At present, however, systematic researches regarding the formation and the underlying mechanisms of such deterioration are sufficient. Aiming at the Site of Yar City, which is a World Heritage, free shrinkage tests and mercury intrusion porosimetry tests are conducted on slurry specimens to investigate the pattern of volumetric change during desiccation from both macro- and micro-perspectives. Based on the existing relationship between the gravimetric water content and the matric suction, a revised van Genuchten (vG) soil-water characteristic model with consideration of volumetric change is proposed for the earthen heritage soil. Finally, the water retention characteristics are predicted and analyzed on the basis of micro-pore structure. The results show that the shrinkage characteristic curve of the tested soil slurry has multi-stages. As the water content decreases, the reduction of void ratio is fast at first and then tends to be a gradual stabilization, while the pore-size distribution curve transforms between monomodal and bimodal forms. The obtained dehydrating soil-water characteristic surface can reflect the synthetic influences of matric suction and void ratio on degree of saturation. It is important to quantitatively reveal the drying shrinkage and subsequent cracking behavior of slurry induced by rainfall erosion on the surface of earthen heritages.
  • [1]
    刘炜. 我国北方7省室外土遗址病害分布特征研究[D]. 西安: 西北大学, 2012.

    LIU Wei. The Study of Issue Distribution Characters of Northern Chinese Earthen Sites[D]. Xi'an: Northwest University, 2012. (in Chinese)
    [2]
    SHAO M S, LI L, WANG S J, et al. Deterioration mechanisms of building materials of Jiaohe ruins in China[J]. Journal of Cultural Heritage, 2013, 14(1): 38–44. doi: 10.1016/j.culher.2012.03.006
    [3]
    张虎元, 刘平, 王锦芳, 等. 土建筑遗址表面结皮形成与剥离机制研究[J]. 岩土力学, 2009, 30(7): 1883–1891. doi: 10.3969/j.issn.1000-7598.2009.07.002

    ZHANG Hu-yuan, LIU Ping, WANG Jin-fang, et al. Generation and detachment of surface crust on ancient earthen architectures[J]. Rock and Soil Mechanics, 2009, 30(7): 1883–1891. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.07.002
    [4]
    崔凯, 张影会, 谌文武, 等. 干旱区夯土遗址表面剥离二元结构特征与形成机制[J]. 兰州大学学报, 2019, 55(5): 647–654. https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201905014.htm

    CUI Kai, ZHANG Ying-hui, CHEN Wen-wu, et al. Characteristics and formation mechanism of the binary structure in scaling off the surface of rammed earth ruins in arid areas[J]. Journal of Lanzhou University, 2019, 55(5): 647–654. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LDZK201905014.htm
    [5]
    刘平, 张虎元, 严耿升, 等. 土建筑遗址表部土体收缩特征曲线测定[J]. 岩石力学与工程学报, 2010, 29(4): 842–849. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004024.htm

    LIU Ping, ZHANG Hu-yuan, YAN Geng-sheng, et al. Determination of soil shrinkage characteristic curve of surface soil on ancient earthen architectures[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(4): 842–849. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201004024.htm
    [6]
    ZHANG Y, YE W M, CHEN B, et al. Desiccation of NaCl-contaminated soil of earthen heritages in the Site of Yar City, Northwest China[J]. Applied Clay Science, 2016, 124, 125: 1–10. doi: 10.1016/j.clay.2016.01.047
    [7]
    曲瑾, 马建林, 杨柏. 三星堆城墙干缩裂缝开裂与扩展机理[J]. 工程地质学报, 2020, 28(3): 610–618. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003018.htm

    QU Jin, MA Jian-lin, YANG Bai. Crack initiation and propagation mechanism of earth wall at Sanxingdui City[J]. Journal of Engineering Geology, 2020, 28(3): 610–618. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202003018.htm
    [8]
    赵天宇, 张虎元, 严耿升, 等. 莫高窟壁画地仗土的土水特性研究[J]. 敦煌研究, 2011(6): 36–42. doi: 10.3969/j.issn.1000-4106.2011.06.007

    ZHAO Tian-yu, ZHANG Hu-yuan, YAN Geng-sheng, et al. The soil-water characteristics of base coat in Mogao Grottoes[J]. Dunhuang Research, 2011(6): 36–42. (in Chinese) doi: 10.3969/j.issn.1000-4106.2011.06.007
    [9]
    李凤洁, 王旭东, 郭青林. 湿度影响下莫高窟壁画地仗层吸附水及吸力变化特征研究[J]. 工程地质学报, 2021, 29(4): 1188–1198. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104026.htm

    LI Feng-jie, WANG Xu-dong, GUO Qing-lin. Research on adsorbed moisture feature and suction variation characteristics of the earthen plaster in Mogao Grottoes under the influence of humidity[J]. Journal of Engineering Geology, 2021, 29(4): 1188–1198. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202104026.htm
    [10]
    张悦, 叶为民, 王琼, 等. 含盐遗址重塑土的吸力测定及土水特征曲线拟合[J]. 岩土工程学报, 2019, 41(9): 1661–1669. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909011.htm

    ZHANG Yue, YE Wei-min, WANG Qiong, et al. Suction measurement and SWRC modelling for reconstituted salt-laden soils in earthen heritages[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(9): 1661–1669. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201909011.htm
    [11]
    邵明申, 李最雄. PS对非饱和重塑黏土的土–水特征曲线的影响[J]. 中南大学学报(自然科学版), 2011, 42(5): 1432–1436. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201105042.htm

    SHAO Ming-shen, LI Zui-xiong. Effect of PS on soil-water characteristic curve of remolded unsaturated clay[J]. Journal of Central South University (Science and Technology), 2011, 42(5): 1432–1436. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201105042.htm
    [12]
    WHEELER S J, SHARMA R S, BUISSON M S R. Coupling of hydraulic hysteresis and stress-strain behaviour in unsaturated soils[J]. Géotechnique, 2003, 53(1): 41–54. doi: 10.1680/geot.2003.53.1.41
    [13]
    孙德安. 饱和度对非饱和土力学性质的影响[J]. 岩土力学, 2009, 30(增刊2): 13–16. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2005.htm

    SUN De-an. Effect of saturation degree on mechanical behaviours of unsaturated soils[J]. Rock and Soil Mechanics, 2009, 30(S2): 13–16. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2009S2005.htm
    [14]
    SALAGER S, NUTH M, FERRARI A, et al. Investigation into water retention behaviour of deformable soils[J]. Canadian Geotechnical Journal, 2013, 50(2): 200–208. doi: 10.1139/cgj-2011-0409
    [15]
    XING X G, LI Y B, MA X Y. Water retention curve correction using changes in bulk density during data collection[J]. Engineering Geology, 2018, 233: 231–237. doi: 10.1016/j.enggeo.2017.12.018
    [16]
    张雪东, 赵成刚, 刘艳, 等. 变形对土水特征曲线影响规律模拟研究[J]. 土木工程学报, 2011, 44(7): 119–126. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107018.htm

    ZHANG Xue-dong, ZHAO Cheng-gang, LIU Yan, et al. Modeling study of the relationship between deformation and water retention curve[J]. China Civil Engineering Journal, 2011, 44(7): 119–126. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201107018.htm
    [17]
    邹维列, 张俊峰, 王协群. 脱湿路径下重塑膨胀土的体变修正与土水特征[J]. 岩土工程学报, 2012, 34(12): 2213–2219. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212011.htm

    ZOU Wei-lie, ZHANG Jun-feng, WANG Xie-qun. Volume change correction and soil-water characteristics of remodeling expansive soil under dehydration path[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12): 2213–2219. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201212011.htm
    [18]
    孙德安, 高游, 刘文捷, 等. 红黏土的土水特性及其孔隙分布[J]. 岩土工程学报, 2015, 37(2): 351–356. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502024.htm

    SUN De-an, GAO You, LIU Wen-jie, et al. Soil-water characteristics and pore-size distribution of lateritic clay[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 351–356. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502024.htm
    [19]
    LIU X F, BUZZI O, YUAN S Y, et al. Multi-scale characterization of retention and shrinkage behavior of four Australian clayey soils[J]. Canadian Geotechnical Journal, 2016, 53(5): 854–870. doi: 10.1139/cgj-2015-0145
    [20]
    谈云志, 喻波, 刘晓玲, 等. 压实红黏土失水收缩过程的孔隙演化规律[J]. 岩土力学, 2015, 36(2): 369–375. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502012.htm

    TAN Yun-zhi, YU Bo, LIU Xiao-ling, et al. Pore size evolution of compacted laterite under desiccation shrinkage process effects[J]. Rock and Soil Mechanics, 2015, 36(2): 369–375. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201502012.htm
    [21]
    SUN W J, CUI Y J. Determining the soil-water retention curve using mercury intrusion porosimetry test in consideration of soil volume change[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2020, 12(5): 1070–1079. doi: 10.1016/j.jrmge.2019.12.022
    [22]
    牛庚, 邵龙潭, 孙德安, 等. 土–水特征曲线测量过程中孔隙分布的演化规律探讨[J]. 岩土力学, 2020, 41(4): 1195–1202. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004010.htm

    NIU Geng, SHAO Long-tan, SUN De-an, et al. Evolution law of pore-size distribution in soil-water retention test[J]. Rock and Soil Mechanics, 2020, 41(4): 1195–1202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202004010.htm
    [23]
    赵天宇, 张虎元, 严耿升, 等. 电子天平在蜡封法密度试验中的应用[J]. 工程勘察, 2009(5): 6–9. https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200905004.htm

    ZHAO Tian-yu, ZHANG Hu-yuan, YAN Geng-sheng, et al. Application of electronic balance in the paraffin-coated method to determining soil density[J]. Geotechnical Investigation & Surveying, 2009(5): 6–9. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCKC200905004.htm
    [24]
    唐朝生, 崔玉军, TANG A M, 等. 土体干燥过程中的体积收缩变形特征[J]. 岩土工程学报, 2011, 33(8): 1271–1279. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm

    TANG Chao-sheng, CUI Yu-jun, TANG A M, et al. Volumetric shrinkage characteristics of soil during drying[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(8): 1271–1279. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201108023.htm
    [25]
    CORNELIS W M, CORLUY J, MEDINA H, et al. Measuring and modelling the soil shrinkage characteristic curve[J]. Geoderma, 2006, 137(1/2): 179–191.
    [26]
    LEONG E C, WIJAYA M. Universal soil shrinkage curve equation[J]. Geoderma, 2015, 237, 238: 78–87. doi: 10.1016/j.geoderma.2014.08.012
    [27]
    ROMERO E, SIMMS P H. Microstructure investigation in unsaturated soils: a review with special attention to contribution of mercury intrusion porosimetry and environmental scanning electron microscopy[J]. Geotechnical and Geological Engineering, 2008, 26(6): 705–727. doi: 10.1007/s10706-008-9204-5
    [28]
    SASANIAN S, NEWSON T A. Use of mercury intrusion porosimetry for microstructural investigation of reconstituted clays at high water contents[J]. Engineering Geology, 2013, 158: 15–22. doi: 10.1016/j.enggeo.2013.03.002
    [29]
    NG C W W, SADEGHI H, HOSSEN S K B, et al. Water retention and volumetric characteristics of intact and re-compacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258–1269. doi: 10.1139/cgj-2015-0364
    [30]
    FIÈS J C, BRUAND A. Particle packing and organization of the textural porosity in clay-silt-sand mixtures[J]. European Journal of Soil Science, 1998, 49(4): 557–567. doi: 10.1046/j.1365-2389.1998.4940557.x
    [31]
    孙文静, 韦广, 崔玉军, 等. 粉土干化过程中微观结构的演变[J]. 岩石力学与工程学报, 2017, 36(10): 2544–2550. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710023.htm

    SUN Wen-jing, WEI Guang, CUI Yu-jun, et al. Microstructure evolution in silty soil during drying[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2544–2550. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710023.htm
    [32]
    TARANTINO A. A water retention model for deformable soils[J]. Géotechnique, 2009, 59(9): 751–762. doi: 10.1680/geot.7.00118
    [33]
    VAN GENUCHTEN M TH. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils[J]. Soil Science Society of America Journal, 1980, 44(5): 892–898. doi: 10.2136/sssaj1980.03615995004400050002x
    [34]
    MUÑOZ-CASTELBLANCO J A, PEREIRA J M, DELAGE P, et al. The water retention properties of a natural unsaturated loess from northern France[J]. Géotechnique, 2012, 62(2): 95–106.
    [35]
    牛庚, 孙德安, 韦昌富, 等. 基于孔径分布的全风化泥岩持水曲线推算[J]. 岩土力学, 2018, 39(4): 1137–1345. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804025.htm

    NIU Geng, SUN De-an, WEI Chang-fu, et al. Determination of water retention curve of fully weathered mudstone using its pore-size distribution[J]. Rock and Soil Mechanics, 2018, 39(4): 1137–1345. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201804025.htm
    [36]
    FREDLUND D G, RAHARDJO H. Soil Mechanics for Unsaturated Soils[M]. New York: John Wiley & Sons Inc, 1993.
    [37]
    PENUMADU D, DEAN J. Compressibility effect in evaluating the pore-size distribution of Kaolin clay using mercury intrusion porosimetry[J]. Canadian Geotechnical Journal, 2000, 37(2): 393–405.

Catalog

    Article views (208) PDF downloads (143) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return