• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FAN Kai-xiang, SHEN Yu-sheng, WEN Yu-min, HUANG Hai-feng, WANG Shuai-shuai, GAO Bo. Dynamic response of composite linings of shallowly buried tunnels in saturated soils subjected to incidence of plane Rayleigh waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 444-455. DOI: 10.11779/CJGE202203006
Citation: FAN Kai-xiang, SHEN Yu-sheng, WEN Yu-min, HUANG Hai-feng, WANG Shuai-shuai, GAO Bo. Dynamic response of composite linings of shallowly buried tunnels in saturated soils subjected to incidence of plane Rayleigh waves[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(3): 444-455. DOI: 10.11779/CJGE202203006

Dynamic response of composite linings of shallowly buried tunnels in saturated soils subjected to incidence of plane Rayleigh waves

More Information
  • Received Date: February 22, 2021
  • Available Online: September 22, 2022
  • Based on the Biot wave theory and the Fourier-Bessel series expansion method, a mechanical model for scattering of composite linings of shallowly buried tunnels in saturated soils subjected to incidence of plane Rayleigh waves is established. The analytical solutions of dynamic stress concentration coefficient, pore pressure concentration coefficient and displacement of saturated soils of the composite linings in frequency domain are solved. Through the parameterization analysis, the influences of the stiffness ratio, thickness ratio and tunnel depth on the dynamic response of the composite linings subjected to Rayleigh waves in different frequencies are studied. The results show that the incident frequency has a significant effect on the dynamic stress concentration coefficient and pore pressure concentration coefficient of the composite linings. Increasing the stiffness ratio and thickness ratio of inner linings to outer linings can significantly reduce the dynamic stress concentration factor and pore pressure concentration factor of the outer linings, and the maximum decrease can be more than 90%, but can significantly amplify the dynamic stress concentration factor of the inner linings, and the impact of shock absorption of the outer linings is limited when the amplitude exceeds a certain value. It is suggested that the stiffness ratio of inner linings to outer linings should be 2~4, and the thickness ratio should be 1~2. With the increase of the buried depth, the dynamic stress concentration coefficient of the inner linings decreases gradually, and the influences of Rayleigh waves on the dynamic response of shallowly buried tunnels are more significant. The results may provide theoretical support for the anti-shock design of underwater tunnels.
  • [1]
    徐长节, 丁海滨, 童立红, 等. 基于非局部Biot理论下饱和土中深埋圆柱形衬砌对平面弹性波的散射[J]. 岩土工程学报, 2018, 40(9): 1563–1570. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809002.htm

    XU Chang-jie, DING Hai-bin, TONG Li-hong, et al. Scattering waves generated by cylindrical lining in saturated soil based on nonlocal Biot theory[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1563–1570. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809002.htm
    [2]
    朱赛男, 李伟华, Vincent W Lee, 等. 平面P波入射下海底衬砌隧道地震响应解析分析[J]. 岩土工程学报, 2020, 42(8): 1418–1427. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008010.htm

    ZHU Sai-nan, LI Wei-hua, VINCENT W L, et al. Seismic response of undersea lining tunnels under incident plane P waves[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(8): 1418–1427. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202008010.htm
    [3]
    刘中宪, 琚鑫, 梁建文. 饱和半空间中隧道衬砌对平面SV波的散射IBIEM求解[J]. 岩土工程学报, 2015, 37(9): 1599–1612. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509008.htm

    LIU Zhong-xian, JU Xing, LIANG Jian-wen. IBIEM solution to scattering of plane SV waves by tunnel lining in saturated poroelastic half-space[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1599–1612. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509008.htm
    [4]
    刘中宪, 梁建文, 张贺. 弹性半空间中衬砌隧道对瑞利波的散射[J]. 岩石力学与工程学报, 2011, 30(8): 1627–1637. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108016.htm

    LIU Zhong-xian, LIANG Jian-wen, ZHANG He. Scattering of rayleigh wave by a lined tunnel in elastic half-space[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(8): 1627–1637. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201108016.htm
    [5]
    李彬. 地铁地下结构抗震理论分析与应用研究[D]. 北京: 清华大学, 2005.

    LI Bin. Theoretical Analysis of Seismic Response of Underground Subway Structures and its Application[D]. Beijing: Tsinghua University, 2005. (in Chinese)
    [6]
    WU D, GAO B, SHEN Y S, et al. Damage evolution of tunnel portal during the longitudinal propagation of Rayleigh waves[J]. Natural Hazards, 2015, 75(3): 2519–2543. doi: 10.1007/s11069-014-1447-2
    [7]
    GREGORY R D. The propagation of waves in an elastic half-space containing a cylindrical cavity[J]. Mathematical Proceedings of the Cambridge Philosophical Society, 1970, 67(3): 689–710. doi: 10.1017/S0305004100046016
    [8]
    HÖLLINGER F, ZIEGLER F. Scattering of pulsed rayleigh surface waves by a cylindrical cavity[J]. Wave Motion, 1979, 1(3): 225–238. doi: 10.1016/0165-2125(79)90035-0
    [9]
    LUCO J E, DE BARROS F C P. Dynamic displacements and stresses in the vicinity of a cylindrical cavity embedded in a half-space[J]. Earthquake Engineering & Structural Dynamics, 1994, 23(3): 321–340.
    [10]
    梁建文, 纪晓东. 地下衬砌洞室对Rayleigh波的放大作用[J]. 地震工程与工程振动, 2006, 26(4): 24–31. doi: 10.3969/j.issn.1000-1301.2006.04.004

    LIANG J, JI X. Amplification of Rayleigh waves due to underground lined cavities[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 24–31. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.04.004
    [11]
    LIU Q J, ZHAO M J, WANG L H. Scattering of plane P, SV or Rayleigh waves by a shallow lined tunnel in an elastic half space[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 52–63. doi: 10.1016/j.soildyn.2013.02.007
    [12]
    张志军. 饱和半空间中Rayleigh波的传播[D]. 天津: 天津大学, 2007.

    ZHANG Zhi-jun. The Propagation of Rayleigh Wave in a Half-space Saturated[D]. Tianjin: Tianjin University, 2007. (in Chinese)
    [13]
    LIN C. Wave Propagation in A Poroelastic Half-Space Saturated With Inviscid Fluid[D]. Southern California: University of Southern California, 2002.
    [14]
    DERESIEWICZ H. The effect of boundaries on wave propagation in a liquid-filled porous solid: IV Surface waves in a half-space[J]. Bulletin of the Seismological Society of America, 1962, 52(3): 627–638. doi: 10.1785/BSSA0520030627
    [15]
    刘优平, 龚敏, 徐斌. 半空间饱和土中输水管道对瑞利波的散射[J]. 四川大学学报(工程科学版), 2012, 44(5): 71–77. https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201205012.htm

    LIU You-ping, GONG M, XU Bin. Scattering of underground water-filled pipe in half saturated space impacted by rayleigh waves[J]. Journal of Sichuan University (Engineering Science Edition), 2012, 44(5): 71–77. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SCLH201205012.htm
    [16]
    徐颖, 梁建文, 刘中宪. Rayleigh波在饱和半空间中圆形洞室周围的散射[J]. 岩土力学, 2017(8): 2411–2424. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708034.htm

    XU Ying, LIANG Jian-wen, LIU Zhong-xian. Diffraction of Rayleigh waves around a circular cavity in poroelastic half-space[J]. Rock and Soil Mechanics, 2017(8): 2411–2424. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201708034.htm
    [17]
    DING H B, TONG L H, XU C J, et al. Dynamic responses of shallow buried composite cylindrical lining embedded in saturated soil under incident P wave based on nonlocal-Biot theory[J]. Soil Dynamics and Earthquake Engineering, 2019, 121: 40–56. doi: 10.1016/j.soildyn.2019.02.018
    [18]
    ZHANG C, LIU Q, DENG P. Surface Motion of a Half‐Space with a semicylindrical canyon under P, SV, and rayleigh waves[J]. Bulletin of the Seismological Society of America, 2017, 107(2): 1–12.
    [19]
    LIANG J, BA Z, LEE V W. Diffraction of plane SV waves by a shallow circular-arc canyon in a saturated poroelastic half-space[J]. Soil Dynamics and Earthquake Engineering, 2006, 26(6/7): 582–610.
    [20]
    梁建文, 纪晓东. 地下衬砌洞室对Rayleigh波的放大作用[J]. 地震工程与工程振动, 2006, 26(4): 24–31. doi: 10.3969/j.issn.1000-1301.2006.04.004

    LIANG Jian-wen, JI Xiao-dong. Amplification of Rayleigh waves due to underground lined cavities[J]. Earthquake Engineering and Engineering Vibration, 2006, 26(4): 24–31. (in Chinese) doi: 10.3969/j.issn.1000-1301.2006.04.004
    [21]
    李伟华. 含饱和土的复杂局部场地波动散射问题的解析解和显式有限元数值模拟[D]. 北京: 北京交通大学, 2004.

    LI Wei-hua. Analytical Solution and Explicit Finite Element Numerical Simulation of Complex Local Field Wave Scattering Problem with Saturated Soil[D]. Beijing: Beijing Jiaotong University, 2004. (in Chinese)
    [22]
    MILTON A, IRENE A S. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables[M]. London: Dover Publications, 1965.
    [23]
    BIOT M A. Theory of propagation of elastic waves in a fluid-saturated porous solid: Ⅰ low-frequency range[J]. The Journal of the Acoustical Society of America, 1956, 28(2): 168–178. doi: 10.1121/1.1908239
    [24]
    邓永锋, 刘松玉, 章定文, 等. 几种孔隙比与渗透系数关系的对比[J]. 西北地震学报, 2011, 33(增刊1): 64–66. https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2011S1015.htm

    DENG Yong-feng, LIU Song-yu, ZHANG Ding-yi, et al. Comparison among some relationships between permeability and void ratio[J]. Northwestern Seismological Journal, 2011, 33(S1): 64–66. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZBDZ2011S1015.htm
    [25]
    吴冬. 山岭隧道洞口段地震损伤反应特性与损伤评价方法研究[D]. 成都: 西南交通大学, 2016.

    WU Dong. Study on Seismic Response Characteristic and Damage Evaluation Method of Tunnel Portal[D]. Chengdu: Southwest Jiaotong University, 2016. (in Chinese)
  • Cited by

    Periodical cited type(13)

    1. 肖建勇,严伟,乔世范,谢济仁,陈韶平,杨舒焜,冯超博. 基于BIM的公路边坡可视化管理方法研究. 铁道科学与工程学报. 2024(06): 2342-2358 .
    2. 张玮,马瑞良,黄震宇,叶子铭. 基于云计算平台的网络安全预警平台改进设计. 自动化技术与应用. 2023(06): 70-72+81 .
    3. 吴小林,王健,唐骁,李青朋,祁长青. 台阶式锯切开挖边坡岩体质量及稳定性评价. 工程勘察. 2023(07): 1-6 .
    4. 王军,刘志明,蔡国军,叶飞龙,宋小进. 基于砂土界面剪切试验的自传感压电土工电缆监测效果评价. 岩土工程学报. 2023(10): 2023-2031 . 本站查看
    5. 戴建炜,杨青,左天才,刘正春,刘常茂. GIS技术在UWB基站可视化模式监测中的应用. 电子设计工程. 2022(03): 136-139 .
    6. 夏元轶,符士侃,杜钰,石廷川. 基于大数据的虚拟仪器关联数据库信息分析方法. 自动化与仪器仪表. 2022(05): 232-235 .
    7. 张鹏,胡惠华,龚道平,胡杰. 硬质岩变形边坡深孔位移监测曲线表征分析. 路基工程. 2022(03): 67-72 .
    8. 陈磊,李斌,彭程,毕晓伟,杨成生. 岩溶山区滑坡监测预警云平台设计与实现. 长江科学院院报. 2022(06): 138-144 .
    9. 叶为民,孔令伟,胡瑞林,查甫生,石胜伟,刘樟荣. 膨胀土滑坡与工程边坡新型防治技术与工程示范研究. 岩土工程学报. 2022(07): 1295-1309 . 本站查看
    10. 梁琴琴,何东林,王振飞,武枝,王宗江,赵丽娜. 三维数字化矿山地质信息整合系统设计及应用. 中国金属通报. 2021(01): 237-238 .
    11. 张治国,毛敏东,PANY.T.,赵其华,吴钟腾. 隧道-滑坡相互作用影响及控制防护技术研究现状与展望. 岩土力学. 2021(11): 3101-3125 .
    12. 王霞. 基于无线传感网络的道路信息监测系统设计. 信息通信. 2020(09): 55-57 .
    13. 张月,马楠,郭阳. 油田企业高性能数据库云平台建设探索. 中国管理信息化. 2020(22): 89-90 .

    Other cited types(15)

Catalog

    Article views (199) PDF downloads (200) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return