• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Liangliang, CHENG Hua, YAO Zhishu, WANG Xiaojian. Improved Knothe surface dynamic subsidence prediction model and its parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1036-1044. DOI: 10.11779/CJGE20220295
Citation: ZHANG Liangliang, CHENG Hua, YAO Zhishu, WANG Xiaojian. Improved Knothe surface dynamic subsidence prediction model and its parameter analysis[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1036-1044. DOI: 10.11779/CJGE20220295

Improved Knothe surface dynamic subsidence prediction model and its parameter analysis

More Information
  • Received Date: March 17, 2022
  • Available Online: May 18, 2023
  • In view of the shortcomings of the traditional Knothe time model in describing the process of surface dynamic subsidence, based on the Knothe time model, considering the nonlinear mechanical characteristics of the overlying strata, an improved Knothe time model is established. The theoretical analysis shows that the improved time model conforms to the variation laws of surface single point subsidence, subsidence velocity and subsidence acceleration. Based on the field measured data and the two-medium method, the expression for parameters of the improved Knothe time model is given. Based on the surface subsidence monitoring data of 4326 working face of Xinglongzhuang Coal Mine, 35101 working face of Sandaogou Coal Mine and 8403 fully mechanized working face of Yangquan No. 2 Coal Mine, the accuracies of the traditional Knothe time model and the improved Knothe time model are compared and analyzed. The results show that the improved time model can more truly reflect the dynamic change process of the surface with the mining time. The average relative standard deviation between the predicted and measured values is only 3.22%, which is far lower than 15.72% of the Knothe time model, which verifies the accuracy and reliability of the improved time model. The process of surface dynamic subsidence is affected by the mining speed v of coal seam, the thickness Hs of loose layer, the thickness Hj of bedrock layer and the full mining angle of loose layer φi and the full mining angle of bedrock φj, and the impact sensitivity is in the order of Hj, v, Hs, φj and φi. The results may provide some reference for the prediction of surface subsidence in coal seam mining.
  • [1]
    HU Q F, CUI X M, WANG G, et al. Key technology of predicting dynamic surface subsidence based on knothe time function[J]. Journal of Software, 2011, 6(7): 1273–1280.
    [2]
    高超, 徐乃忠, 孙万明, 等. 基于Bertalanffy时间函数的地表动态沉陷预测模型[J]. 煤炭学报, 2020, 45(8): 2740-2748.

    GAO Chao, XU Naizhong, SUN Wanming, et al. Dynamic surface subsidence prediction model based on Bertalanffy time function[J]. Journal of China Coal Society, 2020, 45(8): 2740-2748. (in Chinese)
    [3]
    HEJMANOWSKI R, MALINOWSKA A. Evaluation of reliability of subsidence prediction based on spatial statistical analysis[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(2): 432–438. doi: 10.1016/j.ijrmms.2008.07.012
    [4]
    JAROSZ A, KARMIS M, SROKA A. Subsidence development with time—experiences from longwall operations in the Appalachian Coalfield[J]. International Journal of Mining and Geological Engineering, 1990, 8(3): 261-273. doi: 10.1007/BF01554045
    [5]
    孙闯, 徐乃忠, 刘义新, 等. 基于双因素时间函数的松散地层条件下地表点动态沉降预计[J]. 岩土力学, 2017, 38(3): 821-826, 865.

    SUN Chuang, XU Naizhong, LIU Yixin, et al. Prediction of dynamic subsidence of ground point under loose stratum based on two-factor time function[J]. Rock and Soil Mechanics, 2017, 38(3): 821-826, 865. (in Chinese)
    [6]
    王军保, 刘新荣, 刘小军. 开采沉陷动态预测模型[J]. 煤炭学报, 2015, 40(3): 516-521.

    WANG Junbao, LIU Xinrong, LIU Xiaojun. Dynamic prediction model for mining subsidence[J]. Journal of China Coal Society, 2015, 40(3): 516-521. (in Chinese)
    [7]
    唐君, 王金安, 王磊. 薄冲积层下开采地表动态移动规律与特征[J]. 岩土力学, 2014, 35(10): 2958-2968. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410029.htm

    TANG Jun, WANG Jinan, WANG Lei. Dynamic laws and characteristics of surface movement induced by mining under thin alluvium[J]. Rock and Soil Mechanics, 2014, 35(10): 2958-2968. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201410029.htm
    [8]
    刘玉成, 庄艳华. 地下采矿引起的地表下沉的动态过程模型[J]. 岩土力学, 2009, 30(11): 3406-3410, 3416. doi: 10.3969/j.issn.1000-7598.2009.11.031

    LIU Yucheng, ZHUANG Yanhua. Model for dynamic process of ground surface subsidence due to underground mining[J]. Rock and Soil Mechanics, 2009, 30(11): 3406-3410, 3416. (in Chinese) doi: 10.3969/j.issn.1000-7598.2009.11.031
    [9]
    张凯, 胡海峰, 廉旭刚, 等. 地表动态沉陷预测正态时间函数模型优化研究[J]. 煤炭科学技术, 2019, 47(9): 235-240. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909030.htm

    ZHANG Kai, HU Haifeng, LIAN Xugang, et al. Optimization of surface dynamic subsidence prediction normal time function model[J]. Coal Science and Technology, 2019, 47(9): 235-240. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201909030.htm
    [10]
    李德海. 覆岩岩性对地表移动过程时间影响参数的影响[J]. 岩石力学与工程学报, 2004, 23(22): 3780-3784.

    LI Dehai. Influence of cover rock characteristics on time influencing parameters in process of surface movement[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(22): 3780-3784. (in Chinese)
    [11]
    常占强, 王金庄. 关于地表点下沉时间函数的研究: 改进的克诺特时间函数[J]. 岩石力学与工程学报, 2003, 22(9): 1496-1499. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309018.htm

    CHANG Zhanqiang, WANG Jinzhuang. Study on time function of surface subsidence—the improved knothe time function[J]. Chinese Journal of Rock Mechanics and Engineering, 2003, 22(9): 1496-1499. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200309018.htm
    [12]
    张兵, 崔希民, 赵玉玲, 等. 优化分段Knothe时间函数求参方法[J]. 煤炭学报, 2018, 43(12): 3379-3386.

    ZHANG Bing, CUI Ximin, ZHAO Yuling, et al. Parameter calculation method for optimized segmented Knothe time function[J]. Journal of China Coal Society, 2018, 43(12): 3379-3386. (in Chinese)
    [13]
    朱广轶, 沈红霞, 王立国. 地表动态移动变形预测函数研究[J]. 岩石力学与工程学报, 2011, 30(9): 1889-1895. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109020.htm

    ZHU Guangyi, SHEN Hongxia, WANG Liguo. Study of dynamic prediction function of surface movement and deformation[J]. Chinese Journal of Rock Mechanics and Engineering, 2011, 30(9): 1889-1895. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201109020.htm
    [14]
    CHENG H, ZHANG L L, GUO L H, et al. A new dynamic prediction model for underground mining subsidence based on inverse function of unstable creep[J]. Advances in Civil Engineering, 2021, 2021: 1-9.
    [15]
    ZHU X J, GUO G L, ZHA J F, et al. Surface dynamic subsidence prediction model of solid backfill mining[J]. Environmental Earth Sciences, 2016, 75(12): 1007.
    [16]
    ZHANG L L, CHENG H, YAO Z S, et al. Application of the improved knothe time function model in the prediction of ground mining subsidence: a case study from Heze city, Shandong Province, China[J]. Applied Sciences, 2020, 10(9): 3147.
    [17]
    崔希民, 缪协兴, 赵英利, 等. 论地表移动过程的时间函数[J]. 煤炭学报, 1999, 24(5): 453-456. https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199905001.htm

    CUI Ximin, MIAO Xiexing, ZHAO Yingli, et al. Discussion on the time function of time dependent surface movement[J]. Journal of China Coal Society, 1999, 24(5): 453-456. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTXB199905001.htm
    [18]
    王正帅, 邓喀中. 采动区地表动态沉降预测的Richards模型[J]. 岩土力学, 2011, 32(6): 1664-1668. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106015.htm

    WANG Zhengshuai, DENG Kazhong. Richards model of surface dynamic subsidence prediction in mining area[J]. Rock and Soil Mechanics, 2011, 32(6): 1664-1668. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201106015.htm
    [19]
    张兵, 崔希民, 胡青峰. 开采沉陷动态预计的正态分布时间函数模型研究[J]. 煤炭科学技术, 2016, 44(4): 140-145, 174.

    ZHANG Bing, CUI Ximin, HU Qingfeng. Study on normal distributed time function model to dynamically predict mining subsidence[J]. Coal Science and Technology, 2016, 44(4): 140-145, 174. (in Chinese)
    [20]
    席国军, 洪兴, 邵红旗. 改进Logistic函数模型在地表下沉预计中的应用[J]. 煤炭科学技术, 2013, 41(8): 114-117, 128. https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201308032.htm

    XI Guojun, HONG Xing, SHAO Hongqi. Application of improved logistic function model to prediction of surface subsidence[J]. Coal Science and Technology, 2013, 41(8): 114-117, 128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-MTKJ201308032.htm
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (289) PDF downloads (78) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return