• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SU Yanlin, CAI Guoqing, LIU Yi, SHAN Yepeng, LI Jian. Elastic-viscoplastic constitutive model for overconsolidated unsaturated soils considering time effects and its verification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1250-1258. DOI: 10.11779/CJGE20220292
Citation: SU Yanlin, CAI Guoqing, LIU Yi, SHAN Yepeng, LI Jian. Elastic-viscoplastic constitutive model for overconsolidated unsaturated soils considering time effects and its verification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1250-1258. DOI: 10.11779/CJGE20220292

Elastic-viscoplastic constitutive model for overconsolidated unsaturated soils considering time effects and its verification

More Information
  • Received Date: March 17, 2022
  • Available Online: February 15, 2023
  • The time effects have a significant influence on the deformation characteristics of the overconsolidated unsaturated soils. Establishing an elastic-viscoplastic constitutive model for the overconsolidated unsaturated soils considering the time effects is of great significance for accurately analyzing the time-dependent deformation characteristics. Based on the unified hardening model for the overconsolidated soils, an elasto-viscoplastic constitutive model for the overconsolidated unsaturated soils is established, considering the degree of consolidation, matric suction and time effects. Firstly, according to the elasto-plastic deformation characteristics of the overconsolidated soils, the one-dimensional elasto-viscoplastic constitutive model for the overconsolidated soils under continuous loading condition is modified by introducing the unified hardening parameters. Secondly, by using the Barcelona model yield surface of the unsaturated soils and based on the over-stress theory, an elasto-viscoplastic model considering the time effects and the influences of suction is established. Compared with the Barcelona model, an additional viscosity coefficient related to the time effects is introduced. The comparative results of model verification and experimental data show that the proposed model can reasonably predict the time-dependent deformation characteristics of the overconsolidated unsaturated soils.
  • [1]
    BJERRUM L. Engineering geology of Norwegian normally-consolidated marine clays as related to settlements of buildings[J]. Géotechnique, 1967, 17(2): 83-118. doi: 10.1680/geot.1967.17.2.83
    [2]
    YIN J H, GRAHAM J. Elastic viscoplastic modelling of the time-dependent stress-strain behaviour of soils[J]. Canadian Geotechnical Journal, 1999, 36(4): 736-745. doi: 10.1139/t99-042
    [3]
    BORJA R I, KAVAZANJIAN E. Discussion: a constitutive model for the stress-strain-time behaviour of 'wet clays'[J]. Géotechnique, 1987, 37(1): 119-125. doi: 10.1680/geot.1987.37.1.119
    [4]
    KUTTER B L, SATHIALINGAM N. Elastic-viscoplastic modelling of the rate-dependent behaviour of clays[J]. Géotechnique, 1992, 42(3): 427-441. doi: 10.1680/geot.1992.42.3.427
    [5]
    GRAHAM J, CROOKS J H A, BELL A L. Time effects on the stress-strain behaviour of natural soft clays[J]. Géotechnique, 1984, 34(3): 433-444. doi: 10.1680/geot.1984.34.3.433
    [6]
    VAID Y P, CAMPANELLA R G. Time-dependent behavior of undisturbed clay[J]. Journal of the Geotechnical Engineering Division, 1977, 103(7): 693-709. doi: 10.1061/AJGEB6.0000449
    [7]
    LEROUEIL S, KABBAJ M, TAVENAS F, et al. Discussion: Stress—strain—strain rate relation for the compressibility of sensitive natural clays[J]. Géotechnique, 1986, 36(2): 283-290. doi: 10.1680/geot.1986.36.2.283
    [8]
    NASH D F T, SILLS G C, DAVISON L R. One-dimensional consolidation testing of soft clay from Bothkennar[J]. Géotechnique, 1992, 42(2): 241-256. doi: 10.1680/geot.1992.42.2.241
    [9]
    ADACHI T, OKA F. Constitutive equations for normally consolidated clay based on elasto-viscoplast[J]. Soils and Foundations, 1982, 22(4): 57-70. doi: 10.3208/sandf1972.22.4_57
    [10]
    SEKIGUCHI H. Theory of undrained creep rupture of normally consolidated clay based on elasto-viscoplasticity[J]. Soils and Foundations, 1984, 24(1): 129-147. doi: 10.3208/sandf1972.24.129
    [11]
    YIN Z Y, CHANG C S, KARSTUNEN M, et al. An anisotropic elastic–viscoplastic model for soft clays[J]. International Journal of Solids and Structures, 2010, 47(5): 665-677. doi: 10.1016/j.ijsolstr.2009.11.004
    [12]
    王智超, 金刚, 吴晓峰, 等. 非饱和压实土率相关变形特征与时效模型[J]. 岩土力学, 2016, 37(3): 719-727. doi: 10.16285/j.rsm.2016.03.014

    WANG Zhichao, JIN Gang, WU Xiaofeng, et al. Rate-dependent deformation characteristics and time-dependent constitutive model of unsaturated compacted clay[J]. Rock and Soil Mechanics, 2016, 37(3): 719-727. (in Chinese) doi: 10.16285/j.rsm.2016.03.014
    [13]
    姚仰平, 孔令明, 胡晶. 考虑时间效应的UH模型[J]. 中国科学: 技术科学, 2013, 43(3): 298-314. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201303008.htm

    YAO Yangping, KONG Lingming, HU Jing. UH model considering time effect[J]. Scientia Sinica (Technologica), 2013, 43(3): 298-314. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201303008.htm
    [14]
    PERZYNA P. Fundamental problems in viscoplasticity[M]// Advances in Applied Mechanics. Amsterdam: Elsevier, 1966: 243-377.
    [15]
    BODAS FREITAS T M, POTTS D M, ZDRAVKOVIC L. Implications of the definition of the Φ function in elastic- viscoplastic models[J]. Géotechnique, 2012, 62(7): 643-648. doi: 10.1680/geot.10.P.053
    [16]
    DE GENNARO V, PEREIRA J M. A viscoplastic constitutive model for unsaturated geomaterials[J]. Computers and Geotechnics, 2013, 54: 143-151. doi: 10.1016/j.compgeo.2013.06.005
    [17]
    李冬, 刘艳. 非饱和土的黏弹塑性本构模型研究[J]. 北京工业大学学报, 2018, 44(3): 321-326. https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803001.htm

    LI Dong, LIU Yan. Visco-elasto-plasitc constitutive model for unsaturated soils[J]. Journal of Beijing University of Technology, 2018, 44(3): 321-326. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BJGD201803001.htm
    [18]
    胡亚元. 非饱和土等效时间流变模型[J]. 哈尔滨工业大学学报, 2019, 51(12): 153-159. doi: 10.11918/j.issn.0367-6234.201901150

    HU Yayuan. An equivalent-time rheological model of unsaturated soil[J]. Journal of Harbin Institute of Technology, 2019, 51(12): 153-159. (in Chinese) doi: 10.11918/j.issn.0367-6234.201901150
    [19]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [20]
    ALONSO E E, GENS A, JOSA A. Discussion: a constitutive model for partially saturated soils[J]. Géotechnique, 1991, 41(2): 273-275. doi: 10.1680/geot.1991.41.2.273
    [21]
    YIN J H, GRAHAM J. Viscous–elastic–plastic modelling of one-dimensional time-dependent behaviour of clays[J]. Canadian Geotechnical Journal, 1989, 26(2): 199-209. doi: 10.1139/t89-029
    [22]
    姚仰平, 牛雷, 崔文杰, 等. 超固结非饱和土的本构关系[J]. 岩土工程学报, 2011, 33(6): 833-839. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14018.shtml

    YAO Yangping, NIU Lei, CUI Wenjie, et al. UH model for unsaturated soils[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 833-839. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14018.shtml
    [23]
    YAO Y P, GAO Z W, ZHAO J D, et al. Modified UH model: constitutive modeling of overconsolidated clays based on a parabolic hvorslev envelope[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(7): 860-868. doi: 10.1061/(ASCE)GT.1943-5606.0000649
    [24]
    陈栋. 水力-力学耦合下非饱和土的UH模型[D]. 北京: 北京航空航天大学, 2020.

    CHEN Dong. An Advanced UH Model for Unsaturated Soils with Coupling the Hydro-mechanical Behaviour[D]. Beijing: Beihang University, 2020. (in Chinese)
    [25]
    方雨菲, 姚仰平, 舒文俊. 考虑时间效应的粒状材料的UH模型[J]. 岩土工程学报, 2019, 41(增刊2): 17-20. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17837.shtml

    FANG Yufei, YAO Yangping, SHU Wenjun. Time-dependent unified hardening model for granular materials[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 17-20. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17837.shtml
    [26]
    ESTABRAGH A R, JAVADI A A. Critical state for overconsolidated unsaturated silty soil[J]. Canadian Geotechnical Journal, 2008, 45(3): 408-420. doi: 10.1139/T07-105
    [27]
    ZHU J G, YIN J H. Strain-rate-dependent stress-strain behavior of overconsolidated Hong Kong marine clay[J]. Canadian Geotechnical Journal, 2000, 37(6): 1272-1282. doi: 10.1139/t00-054
    [28]
    YIN J H, ZHU J G, GRAHAM J. A new elastic viscoplastic model for time-dependent behaviour of normally and overconsolidated clays: theory and verification[J]. Canadian Geotechnical Journal, 2002, 39(1): 157-173.
    [29]
    NYUNT T T, LEONG E C, RAHARDJOD H. Effects of matric suction and loading rate on the stiffness-strain behaviour of kaolin[C]// Experimental Studies in Unsaturated Soils and Expansive Soils. Francis, 2009: 15-19.
    [30]
    WIJAYA M, LEONG E C, RAHARDJO H. CRS compression tests of an unsaturated Kaolin with pore-water pressure measurement[M]// Unsaturated Soils: Research & Applications. Sydney: CRC Press, 2014: 1639-1643.
  • Cited by

    Periodical cited type(1)

    1. 柳伟,徐长节,胡世韬,朱怀龙. 降雨和库水位升降条件下考虑非饱和渗透系数空间变异的边坡可靠度分析. 土木与环境工程学报(中英文). 2024(03): 61-72 .

    Other cited types(2)

Catalog

    Article views (344) PDF downloads (130) Cited by(3)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return