• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287
Citation: LIU Feiyu, KONG Jianjie, YAO Jiamin. Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 903-911. DOI: 10.11779/CJGE20220287

Effects of rock content and degree of compaction on interface shear characteristics of geogrid-soil-rock mixture

More Information
  • Received Date: March 16, 2022
  • Available Online: May 18, 2023
  • In order to investigate the shear characteristics of the interface between geogrid and soil in the soil-rock aggregation with different rock contents and degrees of compaction, a mono-shear test is carried out on the interface of geogrid-soil mixture with different rock contents by using a large-scale direct shear apparatus. The effects of five kinds of rock contents (0%, 25%, 50%, 75%, 100%) and three kinds of degrees of compaction (88%, 92%, 96%) on the shear strength and bulk deformation characteristics of the interface of geogrid-soil mixture are studied. Based on the laboratory direct shear tests, the discrete element analysis model for reinforced soil-rock mixture is established to explore the mechanism of interaction of the interface between geogrid and soil-rock mixture. The results show that the shear strength, internal friction angle and apparent cohesion of soil-reinforcedment interface increase first and then decrease with the increase of stone content from 0% to 100%, and reach the highest values when the stone content is 75%. The sample exhibits fairly apparent strain softening and dilatancy at high rock content. In addition, the higher the degree of compaction, the faster the shear stress increases and the higher the shear strength of the interface between geogrid and soil-rock mixture. The numerical results show that the force chains of the low rock content model are thinner and more dense, while the force chains of the high rock content samples are thicker and more sparsely distributed, and the two groups of models are formed through strong chains after shear failure. During the shear process, the samples with high rock content will form a zone with large porosity, and the pores on the shear plane develop from both ends to the middle until they are connected.
  • [1]
    CEN D F, HUANG D, REN F. Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface[J]. Acta Geotechnica, 2017, 12(2): 391-413. doi: 10.1007/s11440-016-0468-2
    [2]
    柴贺军, 陈谦应, 孔祥臣, 等. 土石混填路基修筑技术研究综述[J]. 岩土力学, 2004, 25(6): 1005-1010. doi: 10.3969/j.issn.1000-7598.2004.06.037

    CHAI Hejun, CHEN Qianying, KONG Xiangchen, et al. Overview of soil-stone high embankment construction study[J]. Rock and Soil Mechanics, 2004, 25(6): 1005-1010. (in Chinese) doi: 10.3969/j.issn.1000-7598.2004.06.037
    [3]
    唐建一, 徐东升, 刘华北. 含石量对土石混合体剪切特性的影响[J]. 岩土力学, 2018, 39(1): 93-102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801013.htm

    TANG Jianyi, XU Dongsheng, LIU Huabei. Effect of gravel content on shear behavior of sand-gravel mixture[J]. Rock and Soil Mechanics, 2018, 39(1): 93-102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201801013.htm
    [4]
    涂义亮, 刘新荣, 任青阳, 等. 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41(12): 3919-3928. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm

    TU Yiliang, LIU Xinrong, REN Qingyang, et al. Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41(12): 3919-3928. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202012011.htm
    [5]
    刘新荣, 涂义亮, 王林枫, 等. 土石混合体的剪切面分形特征及强度产生机制[J]. 岩石力学与工程学报, 2017, 36(9): 2260-2274. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm

    LIU Xinrong, TU Yiliang, WANG Linfeng, et al. Fractal characteristics of shear failure surface and mechanism of strength generation of soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(9): 2260-2274. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201709020.htm
    [6]
    夏加国, 胡瑞林, 祁生文, 等. 含超径颗粒土石混合体的大型三轴剪切试验研究[J]. 岩石力学与工程学报, 2017, 36(8): 2031-2039. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708023.htm

    XIA Jiaguo, HU Ruilin, QI Shengwen, et al. Large-scale triaxial shear testing of soil rock mixtures containing oversized particles[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(8): 2031-2039. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201708023.htm
    [7]
    杨校辉, 朱彦鹏, 郭楠, 等. 压实度和基质吸力对土石混合填料强度变形特性的影响研究[J]. 岩土力学, 2017, 38(11): 3205-3214. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711017.htm

    YANG Xiaohui, ZHU Yanpeng, GUO Nan, et al. Research on effects of compactness and matric suction on strength deformation characteristics of soil-rock aggregate mixture[J]. Rock and Soil Mechanics, 2017, 38(11): 3205-3214. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201711017.htm
    [8]
    丁秀丽, 李耀旭, 王新. 基于数字图像的土石混合体力学性质的颗粒流模拟[J]. 岩石力学与工程学报, 2010, 29(3): 477-484.

    DING Xiuli, LI Yaoxu, WANG Xin. Particle flow modeling mechanical properties of soil and rock mixtures based on digital image[J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(3): 477-484. (in Chinese)
    [9]
    杨忠平, 田鑫, 雷晓丹, 等. 土石混合料剪切特性影响因素的离散元数值研究[J]. 工程地质学报, 2020, 28(1): 39-50.

    YANG Zhongping, TIAN Xin, LEI Xiaodan, et al. Particle discrete element numerical study on factors of shear strength characteristics for soil-rock mixture[J]. Journal of Engineering Geology, 2020, 28(1): 39-50. (in Chinese)
    [10]
    杨忠平, 李进, 蒋源文, 等. 含石率对土石混合体-基岩界面剪切力学特性的影响[J]. 岩土工程学报, 2021, 43(8): 1443-1452. doi: 10.11779/CJGE202108009

    YANG Zhongping, LI Jin, JIANG Yuanwen, et al. Influences of stone content on shear mechanical properties of soil-rock mixture-bedrock interface[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(8): 1443-1452. (in Chinese) doi: 10.11779/CJGE202108009
    [11]
    杨广庆, 吕鹏, 庞巍, 等. 返包式土工格栅加筋土高挡墙现场试验研究[J]. 岩土力学, 2008, 29(2): 517-522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802065.htm

    YANG Guangqing, LÜ Peng, PANG Wei, et al. Research on geogrid reinforced soil retaining wall with wrapped face by in situ tests[J]. Rock and Soil Mechanics, 2008, 29(2): 517-522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200802065.htm
    [12]
    BATHURST R J, VLACHOPOULOS N, WALTERS D L, et al. The influence of facing stiffness on the performance of two geosynthetic reinforced soil retaining walls[J]. Canadian Geotechnical Journal, 2006, 43(12): 1225-1237.
    [13]
    LYONS C K, FANNIN J. A comparison of two design methods for unpaved roads reinforced with geogrids[J]. Canadian Geotechnical Journal, 2006, 43(12): 1389-1394.
    [14]
    ABDI M R, ARJOMAND M A. Pullout tests conducted on clay reinforced with geogrid encapsulated in thin layers of sand[J]. Geotextiles and Geomembranes, 2011, 29(6): 588-595.
    [15]
    LIU F Y, ZHENG Q T, WANG J, et al. Effect of particle shape on shear behaviour of aggregate-geogrid interface under different aperture ratios[J]. International Journal of Pavement Engineering, 2022, 23(7): 2099-2109.
    [16]
    LIU F, YING M, YUAN G, et al. Particle shape effects on the cyclic shear behaviour of the soil-geogrid interface[J]. Geotextiles and Geomembranes, 2021, 49(4): 991-1003.
    [17]
    LIU F Y, ZHU C, YUAN G H, et al. Behaviour evaluation of a gravelly soil-geogrid interface under normal cyclic loading[J]. Geosynthetics International, 2021, 28(5): 508-520.
    [18]
    周健, 王家全, 孔祥利, 等. 砂土颗粒与土工合成材料接触界面细观研究[J]. 岩土工程学报, 2010, 32(1): 61-67. http://www.cgejournal.com/cn/article/id/11892

    ZHOU Jian, WANG Jiaquan, KONG Xiangli, et al. Mesoscopic study of the interface between sandy soil and geosynthetics[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(1): 61-67. (in Chinese) http://www.cgejournal.com/cn/article/id/11892
    [19]
    徐文杰, 胡瑞林. 土石混合体概念、分类及意义[J]. 水文地质工程地质, 2009, 36(4): 50-56, 70. https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200904014.htm

    XU Wenjie, HU Ruilin. Conception, classification and significations of soil-rock mixture[J]. Hydrogeology & Engineering Geology, 2009, 36(4): 50-56, 70. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SWDG200904014.htm
    [20]
    刘飞禹, 施静, 王军, 等. 三明治形加筋土筋-土界面动力剪切特性[J]. 岩土力学, 2018, 39(6): 1991-1998.

    LIU Feiyu, SHI Jing, WANG Jun, et al. Dynamic shear behavior of interface for clay reinforced with geogrid encapsulated in thin layers of sand[J]. Rock and Soil Mechanics, 2018, 39(6): 1991-1998. (in Chinese)
    [21]
    刘飞禹, 王攀, 王军, 等. 颗粒粒径对格栅-土界面静、动力直剪特性的影响[J]. 岩土力学, 2017, 38(1): 150-156. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701020.htm

    LIU Feiyu, WANG Pan, WANG Jun, et al. Influence of soil particle size on monotonic and cyclic direct shear behaviors of geogrid-soil interface[J]. Rock and Soil Mechanics, 2017, 38(1): 150-156. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201701020.htm
  • Other Related Supplements

  • Cited by

    Periodical cited type(10)

    1. 李永辉,王海,牛恒宇,蒋晓天. 砂土-钢板界面剪切试验与PFC细观模拟分析. 长江科学院院报. 2025(02): 107-114+137 .
    2. 罗余游,刘洪伟,朱鹏宇. 基于DDA方法的高填方分层碾压强夯研究. 路基工程. 2024(02): 153-158 .
    3. 冯忞,宋文捷. 含水率对残积土与土工织物界面剪切特性的影响. 华南地震. 2024(01): 157-164 .
    4. 禹克强,孙少锐,曹曜,王武超,黄佳豪,靳春林,赵博涵. 养护时间和基质含量对土石混合体力学特性的影响. 河南科学. 2024(07): 994-1002 .
    5. 吴建奇,李敏,罗翔,陈腾. 密实度对格栅-再生混凝土骨料界面剪切特性的影响. 路基工程. 2024(05): 84-90 .
    6. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 .
    7. 刘旻,张斌,刘飞禹,刘文燕. 土工格栅防护下埋地管道的力学性能及变形分析. 科学技术与工程. 2024(31): 13531-13539 .
    8. 龚健,梁桓玮,王剑峰,王展宏,许海,欧孝夺,罗月静. 含石量、粗颗粒级配与细粒土性质对土石混合体剪切特性影响研究. 广西大学学报(自然科学版). 2024(06): 1244-1258 .
    9. 汤新,蒋亚龙,孙洋,吴亮秦,圣小珍,郭文杰,王建立. 基于离散元法的土石混合体力学特性数值分析. 华东交通大学学报. 2024(06): 1-10 .
    10. 崔倩. 3D土工格栅-砂界面剪切性状研究. 低温建筑技术. 2023(12): 61-65 .

    Other cited types(8)

Catalog

    Article views (415) PDF downloads (169) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return