Citation: | ZHANG Wenjie, YU Haisheng, JIANG Mohan. Combined remediation of As(Ⅲ)-contaminated soils by pre-oxidation, stabilization and solidification[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(6): 1231-1239. DOI: 10.11779/CJGE20220279 |
[1] |
LOUKOLA-RUSKEENIEMI K, MÜLLER I, REICHEL S, et al. Risk management for arsenic in agricultural soil-water systems: lessons learned from case studies in Europe[J]. Journal of Hazardous Materials, 2022, 424: 127677. doi: 10.1016/j.jhazmat.2021.127677
|
[2] |
MOHAMMED ABDUL K S, JAYASINGHE S S, CHANDANA E P S, et al. Arsenic and human health effects: a review[J]. Environmental Toxicology and Pharmacology, 2015, 40(3): 828-846. doi: 10.1016/j.etap.2015.09.016
|
[3] |
SONG P P, YANG Z H, ZENG G M, et al. Electrocoagulation treatment of arsenic in wastewaters: a comprehensive review[J]. Chemical Engineering Journal, 2017, 317: 707-725. doi: 10.1016/j.cej.2017.02.086
|
[4] |
FERREIRA R T, SILVA A R C, PIMENTEL C, et al. Arsenic stress elicits cytosolic Ca2+ bursts and Crz1 activation in Saccharomyces cerevisiae[J]. Microbiology, 2012, 158(9): 2293-2302. doi: 10.1099/mic.0.059170-0
|
[5] |
TSANG D C W, HARTLEY N R. Metal distribution and spectroscopic analysis after soil washing with chelating agents and humic substances[J]. Environmental Science and Pollution Research, 2014, 21(5): 3987-3995. doi: 10.1007/s11356-013-2300-y
|
[6] |
查甫生, 刘晶晶, 许龙, 等. 水泥固化重金属污染土干湿循环特性试验研究[J]. 岩土工程学报, 2013, 35(7): 1246-1252. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15114.shtml
ZHA Fusheng, LIU Jingjing, XU Long, et al. Cyclic wetting and drying tests on heavy metal contaminated soils solidified/stabilized by cement[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(7): 1246-1252. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract15114.shtml
|
[7] |
杜延军, 金飞, 刘松玉, 等. 重金属工业污染场地固化/稳定处理研究进展[J]. 岩土力学, 2011, 32(1): 116-124. doi: 10.3969/j.issn.1000-7598.2011.01.019
DU Yanjun, JIN Fei, LIU Songyu, et al. Review of stabilization/solidification technique for remediation of heavy metals contaminated lands[J]. Rock and Soil Mechanics, 2011, 32(1): 116-124. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.01.019
|
[8] |
PARK J Y, KANG W H, HWANG I. Hexavalent chromium uptake and release in cement pastes[J]. Environmental Engineering Science, 2006, 23(1): 133-140. doi: 10.1089/ees.2006.23.133
|
[9] |
LI J S, BEIYUAN J, TSANG D C W, et al. Arsenic-containing soil from geogenic source in Hong Kong: Leaching characteristics and stabilization/solidification[J]. Chemosphere, 2017, 182: 31–39. doi: 10.1016/j.chemosphere.2017.05.019
|
[10] |
PAN S Y, SHAH K J, CHEN Y H, et al. Deployment of accelerated carbonation using alkaline solid wastes for carbon mineralization and utilization toward a circular economy[J]. ACS Sustainable Chemistry & Engineering, 2017, 5(8): 6429-6437.
|
[11] |
张亭亭, 李江山, 王平, 等. FeSO4对铬污染土的稳定特性及风险评价试验研究[J]. 岩土力学, 2019, 40(10): 3928-3936. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910027.htm
ZHANG Tingting, LI Jiangshan, WANG Ping, et al. Stabilization characteristics and risk assessment of hexavalent chromium-contaminated soils by ferrous sulfate treatment[J]. Rock and Soil Mechanics, 2019, 40(10): 3928-3936. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201910027.htm
|
[12] |
LI L, WANG X, ZHOU Y Y, et al. Effectiveness and limitation of A-nZVI for restoration of a highly As-contaminated soil[J]. Journal of Cleaner Production, 2021, 284: 124691. doi: 10.1016/j.jclepro.2020.124691
|
[13] |
WANG Y N, TSANG Y F, WANG H W, et al. Effective stabilization of arsenic in contaminated soils with biogenic Manganese oxide (BMO) materials[J]. Environmental Pollution, 2020, 258: 113481. doi: 10.1016/j.envpol.2019.113481
|
[14] |
ZHANG M Y, WANG Y, ZHAO D Y, et al. Immobilization of arsenic in soils by stabilized nanoscale zero-valent iron, iron sulfide (FeS), and magnetite (Fe3O4) particles[J]. Chinese Science Bulletin, 2010, 55(4): 365-372. http://library.rcees.ac.cn/bitstream/311016/21185/1/Immobilization%20of%20arsenic%20in%20soils%20by%20stabilized%20nanoscale%20zero-valent%20iron%2c%20iron%20sulfide%20(FeS)%2c%20and%20magnetite%20(Fe3%20O4%20)%20particles%20.pdf
|
[15] |
MOON D H, WAZNE M, YOON I H, et al. Assessment of cement kiln dust (CKD) for stabilization/solidification (S/S) of arsenic contaminated soils[J]. Journal of Hazardous Materials, 2008, 159(2/3): 512-518. http://www.onacademic.com/detail/journal_1000034083474110_1577.html
|
[16] |
XENIDIS A, STOURAITI C, PAPASSIOPI N. Stabilization of Pb and As in soils by applying combined treatment with phosphates and ferrous iron[J]. Journal of Hazardous Materials, 2010, 177(1/2/3): 929-937. http://www.researchgate.net/profile/Christina_Stouraiti/publication/41190010_Stabilization_of_Pb_and_As_in_soils_by_applying_combined_treatment_with_phosphates_and_ferrous_iron/links/004635165087c9a5f1000000
|
[17] |
赵慧敏. 铁盐-生石灰对砷污染土壤固定/稳定化处理技术研究[D]. 北京: 中国地质大学(北京), 2010.
ZHAO Huimin. Study on Solidification/Stabilization Technology of Arsenic Contaminated Soils Using Molysite and Quicklime[D]. Beijing: China University of Geosciences, 2010. (in Chinese)
|
[18] |
NAZARI A M, RADZINSKI R, GHAHREMAN A. Review of arsenic metallurgy: treatment of arsenical minerals and the immobilization of arsenic[J]. Hydrometallurgy, 2017, 174: 258-281. doi: 10.1016/j.hydromet.2016.10.011
|
[19] |
HUANG Y F, GAO M L, DENG Y X, et al. Efficient oxidation and adsorption of As(Ⅲ) and As(Ⅴ) in water using a Fenton-like reagent, (ferrihydrite)-loaded biochar[J]. The Science of the Total Environment, 2020, 715: 136957. doi: 10.1016/j.scitotenv.2020.136957
|
[20] |
BURBANO A A, DIONYSIOU D D, SUIDAN M T, et al. Oxidation kinetics and effect of pH on the degradation of MTBE with Fenton reagent[J]. Water Research, 2005, 39(1): 107-118. doi: 10.1016/j.watres.2004.09.008
|
[21] |
ZHANG W J, LIN M F. Influence of redox potential on leaching behavior of a solidified chromium contaminated soil[J]. Science of the Total Environment, 2020, 733: 139410. doi: 10.1016/j.scitotenv.2020.139410
|
[22] |
WENZEL W W, KIRCHBAUMER N, PROHASKA T, et al. Arsenic fractionation in soils using an improved sequential extraction procedure[J]. Analytica Chimica Acta, 2001, 436(2): 309-323. doi: 10.1016/S0003-2670(01)00924-2
|
[23] |
陈蕾, 杜延军, 刘松玉, 等. 水泥固化铅污染土的基本应力-应变特性研究[J]. 岩土力学, 2011, 32(3): 715-721. doi: 10.3969/j.issn.1000-7598.2011.03.013
CHEN Lei, DU Yanjun, LIU Songyu, et al. Experimental study of stress-strain properties of cement treated lead-contaminated soils[J]. Rock and Soil Mechanics, 2011, 32(3): 715-721. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.03.013
|
[24] |
AL-KINDI G. Evaluation the solidification/stabilization of heavy metals by Portland cement[J]. Journal of Ecological Engineering, 2019, 20(3): 91-100. doi: 10.12911/22998993/99739
|
[25] |
LI J S, WANG L, CUI J L, et al. Effects of low-alkalinity binders on stabilization/solidification of geogenic As-containing soils: Spectroscopic investigation and leaching tests[J]. Science of the Total Environment, 2018, 631/632: 1486-1494. doi: 10.1016/j.scitotenv.2018.02.247
|
[26] |
YANG K, KIM B C, NAM K, et al. The effect of arsenic chemical form and mixing regime on arsenic mass transfer from soil to magnetite[J]. Environmental Science and Pollution Research, 2017, 24(9): 8479-8488. doi: 10.1007/s11356-017-8510-y
|
[27] |
ZHA F S, LIU C M, KANG B, et al. Acid rain leaching behavior of Zn-contaminated soils solidified/stabilized using cement–soda residue[J]. Chemosphere, 2021, 281: 130916. doi: 10.1016/j.chemosphere.2021.130916
|
[28] |
查甫生, 许龙, 崔可锐. 水泥固化重金属污染土的强度特性试验研究[J]. 岩土力学, 2012, 33(3): 652-656, 664. doi: 10.3969/j.issn.1000-7598.2012.03.002
ZHA Fusheng, XU Long, CUI Kerui. Strength characteristics of heavy metal contaminated soils stabilized/solidified by cement[J]. Rock and Soil Mechanics, 2012, 33(3): 652-656, 664. (in Chinese) doi: 10.3969/j.issn.1000-7598.2012.03.002
|
[29] |
KARAK T, ABOLLINO O, BHATTACHARYYA P, et al. Fractionation and speciation of arsenic in three tea gardens soil profiles and distribution of As in different parts of tea plant (Camellia sinensis L. )[J]. Chemosphere, 2011, 85(6): 948-960. doi: 10.1016/j.chemosphere.2011.06.061
|
[30] |
CAO Y Z, GUO L P, CHEN B, et al. Modeling early age hydration kinetics and the hydrated phase of cement paste blended with chloride and sulfate[J]. Construction and Building Materials, 2020, 261: 120537. doi: 10.1016/j.conbuildmat.2020.120537
|
[31] |
COUSSY S, PAKTUNC D, ROSE J, et al. Arsenic speciation in cemented paste backfills and synthetic calcium-silicate-hydrates[J]. Minerals Engineering, 2012, 39: 51-61. doi: 10.1016/j.mineng.2012.05.016
|
[32] |
CHRYSOCHOOU M, DERMATAS D. Evaluation of ettringite and hydrocalumite formation for heavy metal immobilization: literature review and experimental study[J]. Journal of Hazardous Materials, 2006, 136(1): 20-33. doi: 10.1016/j.jhazmat.2005.11.008
|
[33] |
ZHANG M T, YANG C H, ZHAO M, et al. Immobilization potential of Cr(Ⅵ) in sodium hydroxide activated slag pastes[J]. Journal of Hazardous Materials, 2017, 321: 281-289. doi: 10.1016/j.jhazmat.2016.09.019
|
[34] |
KIM E J, LEE J C, BAEK K. Abiotic reductive extraction of arsenic from contaminated soils enhanced by complexation: arsenic extraction by reducing agents and combination of reducing and chelating agents[J]. Journal of Hazardous Materials, 2015, 283: 454-461. doi: 10.1016/j.jhazmat.2014.09.055
|
[35] |
ZHANG S J, LI X Y, CHEN J P. An XPS study for mechanisms of arsenate adsorption onto a magnetite-doped activated carbon fiber[J]. Journal of Colloid and Interface Science, 2010, 343(1): 232-238. doi: 10.1016/j.jcis.2009.11.001
|
[36] |
SUN M, ZHANG G, QIN Y H, et al. Redox conversion of chromium(Ⅵ) and arsenic(Ⅲ) with the intermediates of chromium(Ⅴ) and arsenic(Ⅳ) via AuPd/CNTs electrocatalysis in acid aqueous solution[J]. Environmental Science & Technology, 2015, 49(15): 9289-9297. doi: 10.1021/acs.est.5b01759
|
[37] |
CHEN Z H, JIN J Y, SONG X J, et al. Redox conversion of arsenite and nitrate in the UV/quinone systems[J]. Environmental Science & Technology, 2018, 52(17): 10011-10018. http://www.ncbi.nlm.nih.gov/pubmed/30063337
|
[38] |
KOPPENOL W H, STANBURY D M, BOUNDS P L. Electrode potentials of partially reduced oxygen species, from dioxygen to water[J]. Free Radical Biology and Medicine, 2010, 49(3): 317-322. doi: 10.1016/j.freeradbiomed.2010.04.011
|
[39] |
HERNÁNDEZ-FLORES H, PARIONA N, HERRERA-TREJO M, et al. Concrete/maghemite nanocomposites as novel adsorbents for arsenic removal[J]. Journal of Molecular Structure, 2018, 1171: 9-16. doi: 10.1016/j.molstruc.2018.05.078
|