• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Wenjie, JIA Zhiwei, MI Yongbao. Radial migration of water-soluble agents in high-pressure rotary jetting remediation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1017-1023. DOI: 10.11779/CJGE20220264
Citation: ZHANG Wenjie, JIA Zhiwei, MI Yongbao. Radial migration of water-soluble agents in high-pressure rotary jetting remediation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1017-1023. DOI: 10.11779/CJGE20220264

Radial migration of water-soluble agents in high-pressure rotary jetting remediation

More Information
  • Received Date: March 27, 2022
  • Available Online: May 18, 2023
  • The high-pressure rotary jetting (HPRJ) is a new technology for the in-situ remediation of contaminated soils. However, the radial migration of water-soluble remediation agents in HPRJ is still not clear, resulting in a lack of reliable theoretical guidance in engineering practice. The laboratory and in-situ HPRJ tests as the well as numerical simulations are performed using the sodium chloride and fluorescein sodium as the tracers to investigate the radial migration and distribution of agents under the effects of jet and advection-diffusion. The results of the in-situ tests after 5 d show that the agent concentration decreases along the radial direction and is significantly affected by the rotary jetting parameters. The optimum combination of the rotary jetting parameters is an injection pressure of 25 MPa, a lifting speed of 25 cm/min, a rotation speed of 22 r/min, a nozzle diameter of 1.6 mm and jetting of twice. The laboratory tests and the numerical simulations show that concentration of the agent in the mixing zone decreases linearly, with a relative concentration of 0.54 to 0.91 near the nozzle. The radius of the mixing zone increases with the increase in the nozzle diameter, injection pressure and the number of jetting times, and decreases with the increasing rotation speed. The agent concentration and radial uniformity are correlated positively with the rotation speed, nozzle diameter and the number of jetting times. The migration of the agent due to advection and diffusion reduces the agent in the mixing zone and increases the agent in the diffusion zone, and homogenizes the radial agent distribution. The advection only lasts for a few minutes, however, it dominates the agent migration in the first 30 d, and thereafter the diffusion becomes more important.
  • [1]
    GUO X Z, ZHANG W J, YU H S, et al. Reduction, stabilization, and solidification of Cr(VI) in contaminated soils with a sustainable by-product-based binder[J]. Chemosphere, 2022, 307: 135902. doi: 10.1016/j.chemosphere.2022.135902
    [2]
    孙铁珩, 李培军, 周启星. 土壤污染形成机理与修复技术[M]. 北京: 科学出版社, 2005.

    SUN Tieheng, LI Peijun, ZHOU Qixing. Formation Mechanism and Remediation Technology of Soil Pollution[M]. Beijing: Science Press, 2005. (in Chinese)
    [3]
    XIA W Y, DU Y J, LI F S, et al. In-situ solidification/ stabilization of heavy metals contaminated site soil using a dry jet mixing method and new hydroxyapatite based binder[J]. Journal of Hazardous Materials, 2019, 369: 353-361. doi: 10.1016/j.jhazmat.2019.02.031
    [4]
    夏威夷, 杜延军, 冯亚松, 等. 重金属污染场地原位固化稳定化修复试验研究[J]. 岩石力学与工程学报, 2017, 36(11): 2839-2849.

    XIA Weiyi, DU Yanjun, FENG Yasong, et al. Remediation of a heavy metal contaminated site: in situ solidification and stabilization[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(11): 2839-2849. (in Chinese)
    [5]
    杨乐巍, 张晓斌, 李书鹏, 等. 土壤及地下水原位注入-高压旋喷注射修复技术工程应用案例分析[J]. 环境工程, 2018, 36(12): 48-53, 118. https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201812012.htm

    YANG Yuewei, ZHANG Xiaobin, LI Shupeng, et al. Case analysis on engineering application of soil and groundwater in situ injection-high pressure rotary jet injection remediation[J]. Environmental Engineering, 2018, 36(12): 48-53, 118. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HJGC201812012.htm
    [6]
    MODONI G, CROCE P, MONGIOVÌ L. Theoretical modelling of jet grouting[J]. Géotechnique, 2006, 56(5): 335-347. doi: 10.1680/geot.2006.56.5.335
    [7]
    SHIBAZAKI M. State of practice of jet grouting[M]// Grouting and Ground Treatment. Reston: American Society of Civil Engineers, 2003: 198-217.
    [8]
    王志丰, 沈水龙, 许烨霜. 基于圆形断面自由紊动射流理论的旋喷桩直径计算方法[J]. 岩土工程学报, 2012, 34(10): 1957-1960. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14866.shtml

    WANG Zhifeng, SHEN Shuilong, XU Yeshuang. An approach to calculate diameter of jet-grouted columns based on turbulent flow theory[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(10): 1957-1960. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract14866.shtml
    [9]
    SHEN S L, WANG Z F, YANG J, et al. Generalized approach for prediction of jet grout column diameter[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2013, 139(12): 2060-2069. doi: 10.1061/(ASCE)GT.1943-5606.0000932
    [10]
    宋刚练, 牌卫卫, 江建斌, 等. 应用于污染场地原位修复的旋喷工艺研究[J]. 探矿工程(岩土钻掘工程), 2017, 44(7): 85-89. doi: 10.3969/j.issn.1672-7428.2017.07.017

    SONG Ganglian, PAI Weiwei, JIANG Jianbin, et al. Research on rotary jet grouting technology applied in situ remediation of contaminated site[J]. Exploration Engineering (Rock & Soil Drilling and Tunneling), 2017, 44(7): 85-89. (in Chinese) doi: 10.3969/j.issn.1672-7428.2017.07.017
    [11]
    宛召. 高压旋喷工艺在上海某污染场地修复中的应用研究[D]. 长春: 吉林大学, 2017.

    WAN Zhao. Study on the Application of High Pressure Jet Grouting Technology in the Remediation of a Contaminated Site in Shanghai[D]. Changchun: Jilin University, 2017. (in Chinese)
    [12]
    董万涛. 新型复合氧化剂在石油污染场地修复的应用研究[D]. 兰州: 兰州理工大学, 2021.

    DONG Wantao. Research on Application of New Complex Oxidants in Petroleum Contaminated Site[D]. Lanzhou: Lanzhou University of Technology, 2021. (in Chinese)
    [13]
    WANG Z F, SHEN S L, MODONI G, et al. Excess pore water pressure caused by the installation of jet grouting columns in clay[J]. Computers and Geotechnics, 2020, 125: 103667. doi: 10.1016/j.compgeo.2020.103667
    [14]
    ZHANG W J, YUAN S S. Characterizing preferential flow in landfilled municipal solid waste[J]. Waste Management. 2019, 84: 20-28.
    [15]
    XIE H J, JIANG Y S, ZHANG C H, et al. An analytical model for volatile organic compound transport through a composite liner consisting of a geomembrane, a GCL, and a soil liner[J]. Environmental Science and Pollution Research, 2015, 22(4): 2824-2836.
    [16]
    SHACKELFORD C D. The ISSMGE Kerry Rowe Lecture: the role of diffusion in environmental geotechnics[J]. Canadian Geotechnical Journal, 2014, 51(11): 1219-1242.
    [17]
    FETTER C W, BOVING T, KREAMER D. Contaminant Hydrogeology[M]. Long Grove: Waveland Press, 2017.
  • Other Related Supplements

  • Cited by

    Periodical cited type(10)

    1. 李永辉,王海,牛恒宇,蒋晓天. 砂土-钢板界面剪切试验与PFC细观模拟分析. 长江科学院院报. 2025(02): 107-114+137 .
    2. 罗余游,刘洪伟,朱鹏宇. 基于DDA方法的高填方分层碾压强夯研究. 路基工程. 2024(02): 153-158 .
    3. 冯忞,宋文捷. 含水率对残积土与土工织物界面剪切特性的影响. 华南地震. 2024(01): 157-164 .
    4. 禹克强,孙少锐,曹曜,王武超,黄佳豪,靳春林,赵博涵. 养护时间和基质含量对土石混合体力学特性的影响. 河南科学. 2024(07): 994-1002 .
    5. 吴建奇,李敏,罗翔,陈腾. 密实度对格栅-再生混凝土骨料界面剪切特性的影响. 路基工程. 2024(05): 84-90 .
    6. 石广斌,周泽凯. 土石混合体边坡力学特性及稳定性分析方法研究进展. 金属矿山. 2024(10): 202-215 .
    7. 刘旻,张斌,刘飞禹,刘文燕. 土工格栅防护下埋地管道的力学性能及变形分析. 科学技术与工程. 2024(31): 13531-13539 .
    8. 龚健,梁桓玮,王剑峰,王展宏,许海,欧孝夺,罗月静. 含石量、粗颗粒级配与细粒土性质对土石混合体剪切特性影响研究. 广西大学学报(自然科学版). 2024(06): 1244-1258 .
    9. 汤新,蒋亚龙,孙洋,吴亮秦,圣小珍,郭文杰,王建立. 基于离散元法的土石混合体力学特性数值分析. 华东交通大学学报. 2024(06): 1-10 .
    10. 崔倩. 3D土工格栅-砂界面剪切性状研究. 低温建筑技术. 2023(12): 61-65 .

    Other cited types(8)

Catalog

    Article views (206) PDF downloads (61) Cited by(18)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return