Citation: | ZHANG Zhifei, HUANG Man, TANG Zhicheng. Numerical study on mechanical properties of grains in rock discontinuity undergoing shear[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 986-996. DOI: 10.11779/CJGE20220209 |
[1] |
BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54.
|
[2] |
INDRARATNA B, HAQUE A, AZIZ N. Shear behavior of idealized infilled joints under constant normal stiffness[J]. Géotechnique, 1999, 49(3): 331-355. doi: 10.1680/geot.1999.49.3.331
|
[3] |
GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25-40. doi: 10.1016/S1365-1609(02)00101-6
|
[4] |
JAHANIAN H, SADAGHIANI M H. Experimental study on the shear strength of sandy clay infilled regular rough rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 907-922. doi: 10.1007/s00603-014-0643-4
|
[5] |
周辉, 程广坦, 朱勇, 等. 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.
ZHOU Hui, CHENG Guangtan, ZHU Yong, et al. Experimental study of shear deformation characteristics of marble dentate joints[J]. Rock and Soil Mechanics, 40(3): 852-860. (in Chinese)
|
[6] |
SCHOLZ C H. Wear and gouge formation in brittle faulting[J]. Geology, 1987, 15(6): 493-495. doi: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2
|
[7] |
BILLI A, STORTI F. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone[J]. Tectonophysics, 2004, 384(1/2/3/4): 115-128.
|
[8] |
ZHAO Z H. Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1461-1479. doi: 10.1007/s00603-013-0373-z
|
[9] |
PEREIRA J P, FREITAS M H. Mechanisms of shear failure in artificial fractures of sandstone and their implication for models of hydromechanical coupling[J]. Rock Mechanics and Rock Engineering, 1993, 26(3): 195-214. doi: 10.1007/BF01040115
|
[10] |
MAIR K, FRYE K M, MARONE C. Influence of grain characteristics on the friction of granular shear zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): 2219.
|
[11] |
ABE S, MAIR K. Effects of gouge fragment shape on fault friction: new 3D modelling results[J]. Geophysical Research Letters, 2009, 36(23): L23302. doi: 10.1029/2009GL040684
|
[12] |
ZHAO Z, JING L, NERETNIEKS I. Particle mechanics model for the effects of shear on solute retardation coefficient in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 92-102. doi: 10.1016/j.ijrmms.2012.03.001
|
[13] |
GAO K, GUYER R A, ROUGIER E, et al. Plate motion in sheared granular fault system[J]. Earth and Planetary Science Letters, 2020, 548: 116481. doi: 10.1016/j.epsl.2020.116481
|
[14] |
CHEN Y, LIANG W, SELVADURAI A P S, et al. Influence of asperity degradation and gouge formation on flow during rock fracture shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 143: 104795. doi: 10.1016/j.ijrmms.2021.104795
|
[15] |
PARK J, SONG J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1315-1328. doi: 10.1016/j.ijrmms.2009.03.007
|
[16] |
BAHAADDINI M, HAGAN P C, MITRA R, et al. Experimental and numerical study of asperity degradation in the direct shear test[J]. Engineering Geology, 2016, 204: 41-52. doi: 10.1016/j.enggeo.2016.01.018
|
[17] |
岑夺丰, 黄达, 黄润秋. 岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J]. 岩土工程学报, 2014, 36(4): 695-706. doi: 10.11779/CJGE201404014
CEN Duofeng, HUANG Da, HUANG Runqiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. (in Chinese) doi: 10.11779/CJGE201404014
|
[18] |
ZHANG X P, WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 711-737.
|
[19] |
ZHUANG X, CHUN J, ZHU H. A comparative study on unfilled and filled crack propagation for rock-like brittle material[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 110-120. doi: 10.1016/j.tafmec.2014.04.004
|
[20] |
THORNTON C, ZHANG L. Numerical simulations of the direct shear test[J]. Chemical Engineering & Technology, 2003, 26(2): 153-156.
|
[21] |
AMITRANO D, SCHMITTBUHL J. Fracture roughness and gouge distribution of a granite shear band[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2375.
|
[22] |
LI H, DENG J, YIN J, et al. An experimental and analytical study of rate-dependent shear behavior of rough joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104702. doi: 10.1016/j.ijrmms.2021.104702
|
[23] |
SAMMIS C, KING G, BIEGEL R. The kinematics of gouge deformation[J]. Pure and Applied Geophysics, 1987, 125(5): 777-812. doi: 10.1007/BF00878033
|
[24] |
MANDELBROT B B, WHEELER J A. The fractal geometry of nature[J]. American Journal of Physics, 1983, 51(3): 286-287. doi: 10.1119/1.13295
|
[25] |
ABE S, MAIR K. Grain fracture in 3D numerical simulations of granular shear[J], Geophysical Research Letters, 2005, 32(5): L05305.
|
[26] |
MAIR K, ABE S. 3D numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization[J]. Earth and Planetary Science Letters, 2008, 274(1): 72-81.
|
[27] |
XU Y R, XU Y F. Numerical simulation of direct shear test of rockfill based on particle breaking[J]. Acta Geotechnica, 2021, 16(10): 3133-3144. doi: 10.1007/s11440-021-01172-2
|
[28] |
STORTI F, BILLI A, SALVINI F. Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis[J]. Earth and Planetary Science Letters, 2003, 206(1): 173-186.
|
[29] |
AN L J, SAMMIS C G. Particle size distribution of cataclastic fault materials from Southern California: a 3-D study[J]. Pure and Applied Geophysics, 1994, 143(1): 203-227.
|