• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Zhifei, HUANG Man, TANG Zhicheng. Numerical study on mechanical properties of grains in rock discontinuity undergoing shear[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 986-996. DOI: 10.11779/CJGE20220209
Citation: ZHANG Zhifei, HUANG Man, TANG Zhicheng. Numerical study on mechanical properties of grains in rock discontinuity undergoing shear[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 986-996. DOI: 10.11779/CJGE20220209

Numerical study on mechanical properties of grains in rock discontinuity undergoing shear

More Information
  • Received Date: February 27, 2022
  • Available Online: May 18, 2023
  • The PFC is used to study the shear properties of infilled rock discontinuities, with emphasis on the effects of grain shape [reflected by the ratio of major- to senior-axis (a/b)] and combination. The results show that: (1) Grain movement and failure can be divided into five types, rolling, rolling-sliding, crushing-rolling, comminuting and rolling-crushing, depending on the normal stress and grain shape, and the microcrack evolution is different under each failure mode. The fragmentation degree of grains increases with the increasing normal stress on the whole, while it decreases with the increasing a/b. The abrasion of the discontinuity walls is more serious at higher normal stress and a/b. The tension microcracks are the dominant failure for the grains and discontinuity walls. The size distribution of clastic mixtures formed after grain crushing can be described by a power law exponent or fractal dimension D. The smaller the value of D, the lower the fragmentation degree. (2) When the shapes of the double infilled grains are identical, the surface micro-roughness affects the shear properties to a large extent. When they are different, the grains with higher a/b afford more compression and shear loads, resulting in a higher fragmentation degree. The friction between two grains also affects its surface abrasions and shear movement and failure processes. (3) The average frictional strength of infilled rock discontinuities is related to the size distribution of the clastic mixture. As a/b increases or normal stress decreases, the content of large angular fragments increase, which further leads to the increase in the overall frictional strength. An empirical formula for predicting average friction strengths of rock discontinuities infilled with grains is proposed and is preliminarily validated through the data in the literatures.
  • [1]
    BARTON N, CHOUBEY V. The shear strength of rock joints in theory and practice[J]. Rock Mechanics, 1977, 10(1/2): 1-54.
    [2]
    INDRARATNA B, HAQUE A, AZIZ N. Shear behavior of idealized infilled joints under constant normal stiffness[J]. Géotechnique, 1999, 49(3): 331-355. doi: 10.1680/geot.1999.49.3.331
    [3]
    GRASSELLI G, EGGER P. Constitutive law for the shear strength of rock joints based on three-dimensional surface parameters[J]. International Journal of Rock Mechanics and Mining Sciences, 2003, 40(1): 25-40. doi: 10.1016/S1365-1609(02)00101-6
    [4]
    JAHANIAN H, SADAGHIANI M H. Experimental study on the shear strength of sandy clay infilled regular rough rock joints[J]. Rock Mechanics and Rock Engineering, 2015, 48(3): 907-922. doi: 10.1007/s00603-014-0643-4
    [5]
    周辉, 程广坦, 朱勇, 等. 大理岩规则齿形结构面剪切特性试验研究[J]. 岩土力学, 2019, 40(3): 852-860.

    ZHOU Hui, CHENG Guangtan, ZHU Yong, et al. Experimental study of shear deformation characteristics of marble dentate joints[J]. Rock and Soil Mechanics, 40(3): 852-860. (in Chinese)
    [6]
    SCHOLZ C H. Wear and gouge formation in brittle faulting[J]. Geology, 1987, 15(6): 493-495. doi: 10.1130/0091-7613(1987)15<493:WAGFIB>2.0.CO;2
    [7]
    BILLI A, STORTI F. Fractal distribution of particle size in carbonate cataclastic rocks from the core of a regional strike-slip fault zone[J]. Tectonophysics, 2004, 384(1/2/3/4): 115-128.
    [8]
    ZHAO Z H. Gouge particle evolution in a rock fracture undergoing shear: a microscopic DEM study[J]. Rock Mechanics and Rock Engineering, 2013, 46(6): 1461-1479. doi: 10.1007/s00603-013-0373-z
    [9]
    PEREIRA J P, FREITAS M H. Mechanisms of shear failure in artificial fractures of sandstone and their implication for models of hydromechanical coupling[J]. Rock Mechanics and Rock Engineering, 1993, 26(3): 195-214. doi: 10.1007/BF01040115
    [10]
    MAIR K, FRYE K M, MARONE C. Influence of grain characteristics on the friction of granular shear zones[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B10): 2219.
    [11]
    ABE S, MAIR K. Effects of gouge fragment shape on fault friction: new 3D modelling results[J]. Geophysical Research Letters, 2009, 36(23): L23302. doi: 10.1029/2009GL040684
    [12]
    ZHAO Z, JING L, NERETNIEKS I. Particle mechanics model for the effects of shear on solute retardation coefficient in rock fractures[J]. International Journal of Rock Mechanics and Mining Sciences, 2012, 52: 92-102. doi: 10.1016/j.ijrmms.2012.03.001
    [13]
    GAO K, GUYER R A, ROUGIER E, et al. Plate motion in sheared granular fault system[J]. Earth and Planetary Science Letters, 2020, 548: 116481. doi: 10.1016/j.epsl.2020.116481
    [14]
    CHEN Y, LIANG W, SELVADURAI A P S, et al. Influence of asperity degradation and gouge formation on flow during rock fracture shearing[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 143: 104795. doi: 10.1016/j.ijrmms.2021.104795
    [15]
    PARK J, SONG J. Numerical simulation of a direct shear test on a rock joint using a bonded-particle model[J]. International Journal of Rock Mechanics and Mining Sciences, 2009, 46(8): 1315-1328. doi: 10.1016/j.ijrmms.2009.03.007
    [16]
    BAHAADDINI M, HAGAN P C, MITRA R, et al. Experimental and numerical study of asperity degradation in the direct shear test[J]. Engineering Geology, 2016, 204: 41-52. doi: 10.1016/j.enggeo.2016.01.018
    [17]
    岑夺丰, 黄达, 黄润秋. 岩质边坡断续裂隙阶梯状滑移模式及稳定性计算[J]. 岩土工程学报, 2014, 36(4): 695-706. doi: 10.11779/CJGE201404014

    CEN Duofeng, HUANG Da, HUANG Runqiu. Step-path failure mode and stability calculation of jointed rock slopes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 695-706. (in Chinese) doi: 10.11779/CJGE201404014
    [18]
    ZHANG X P, WONG L N Y. Cracking processes in rock-like material containing a single flaw under uniaxial compression: a numerical study based on parallel bonded-particle model approach[J]. Rock Mechanics and Rock Engineering, 2012, 45(5): 711-737.
    [19]
    ZHUANG X, CHUN J, ZHU H. A comparative study on unfilled and filled crack propagation for rock-like brittle material[J]. Theoretical and Applied Fracture Mechanics, 2014, 72: 110-120. doi: 10.1016/j.tafmec.2014.04.004
    [20]
    THORNTON C, ZHANG L. Numerical simulations of the direct shear test[J]. Chemical Engineering & Technology, 2003, 26(2): 153-156.
    [21]
    AMITRANO D, SCHMITTBUHL J. Fracture roughness and gouge distribution of a granite shear band[J]. Journal of Geophysical Research: Solid Earth, 2002, 107(B12): 2375.
    [22]
    LI H, DENG J, YIN J, et al. An experimental and analytical study of rate-dependent shear behavior of rough joints[J]. International Journal of Rock Mechanics and Mining Sciences, 2021, 142: 104702. doi: 10.1016/j.ijrmms.2021.104702
    [23]
    SAMMIS C, KING G, BIEGEL R. The kinematics of gouge deformation[J]. Pure and Applied Geophysics, 1987, 125(5): 777-812. doi: 10.1007/BF00878033
    [24]
    MANDELBROT B B, WHEELER J A. The fractal geometry of nature[J]. American Journal of Physics, 1983, 51(3): 286-287. doi: 10.1119/1.13295
    [25]
    ABE S, MAIR K. Grain fracture in 3D numerical simulations of granular shear[J], Geophysical Research Letters, 2005, 32(5): L05305.
    [26]
    MAIR K, ABE S. 3D numerical simulations of fault gouge evolution during shear: grain size reduction and strain localization[J]. Earth and Planetary Science Letters, 2008, 274(1): 72-81.
    [27]
    XU Y R, XU Y F. Numerical simulation of direct shear test of rockfill based on particle breaking[J]. Acta Geotechnica, 2021, 16(10): 3133-3144. doi: 10.1007/s11440-021-01172-2
    [28]
    STORTI F, BILLI A, SALVINI F. Particle size distributions in natural carbonate fault rocks: insights for non-self-similar cataclasis[J]. Earth and Planetary Science Letters, 2003, 206(1): 173-186.
    [29]
    AN L J, SAMMIS C G. Particle size distribution of cataclastic fault materials from Southern California: a 3-D study[J]. Pure and Applied Geophysics, 1994, 143(1): 203-227.
  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. 郭文远,李世民,王志岗,高涛,陶连金,谢霖,刘建功,刘华南. 正断层错动作用下浅埋地铁隧道受力分析方法及抗断设计研究. 振动与冲击. 2025(01): 252-261+297 .
    2. 王浩鱇,申玉生,潘笑海,常铭宇,张昕阳,粟威. 强震区穿越多破裂面破碎带隧道动力特性试验研究. 现代隧道技术. 2025(01): 212-220+230 .
    3. 王志岗,陶连金,石城,史明,刘建功. 逆断层错动作用下双仓管廊结构力学特性和抗断设计研究. 土木工程学报. 2024(07): 37-50 .
    4. 翟之阳,王春瑶,路平. 地震作用下隧道不同位置单一及组合渗漏规律研究. 安徽建筑. 2024(09): 153-157 .
    5. 张治国,冯家伟,朱正国,赵其华,孙苗苗. 断层错动下非连续管道的力学响应分析. 岩土力学. 2024(11): 3221-3234 .
    6. 王天强,耿萍,何川,王琦. 穿越活动断裂带螺旋隧道抗错性能模型试验研究. 岩石力学与工程学报. 2024(11): 2738-2752 .
    7. 张君臣,李伟平,晏启祥,张伟列,孙明辉,陈文宇. 含有空心榫的盾构隧道环缝接头柔性特征研究. 土木工程学报. 2024(12): 104-117 .
    8. 王综仕,韩现民,徐孟起,王为鑫. 断层错动-地震不同时序作用对隧道的影响研究. 石家庄铁道大学学报(自然科学版). 2024(04): 45-50+124 .
    9. 朱合华,禹海涛,韩富强,卫一博,袁勇. 穿越活动断层隧道抗震韧性设计理念与关键问题. 中国公路学报. 2023(11): 193-204 .

    Other cited types(2)

Catalog

    Article views (809) PDF downloads (4769) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return