• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHONG Zilan, ZHANG Yabo, HOU Benwei, HAN Junyan, DU Xiuli. Seismic response analysis and damage assessment of urban water supply networks considering influences of crossing pipelines[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 964-975. DOI: 10.11779/CJGE20220201
Citation: ZHONG Zilan, ZHANG Yabo, HOU Benwei, HAN Junyan, DU Xiuli. Seismic response analysis and damage assessment of urban water supply networks considering influences of crossing pipelines[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 964-975. DOI: 10.11779/CJGE20220201

Seismic response analysis and damage assessment of urban water supply networks considering influences of crossing pipelines

More Information
  • Received Date: February 24, 2022
  • Available Online: May 18, 2023
  • Based on a buried water supply network in Beijing, the two-dimensional finite element models for the network are developed in this study. The influences of the critical parameters, such as the pipe diameter, joint type, site condition, intensity level of ground motion and incident angle of seismic wave, on the axial and bending deformations of pipe joints are systematically investigated, and the seismic damage status of the water supply network under different intensity levels of earthquakes is evaluated. Moreover, the criteria for damage assessment of the pipelines based on joint deformation are developed through the statistical analysis of the test results of the worldwide pipeline joints. These criteria are subsequently used for the seismic damage assessment of different types of pipeline joints. A seismic damage database of typical pipeline joints buried in different engineering sites is established. Finally, according to the pipeline properties, engineering site conditions and seismic damage database of typical pipeline joints, the seismic damage distribution maps of water supply networks are developed using the GIS. It is found that the peak deformations of the joints at the pipeline cross junctions are about 1.5 to 2.0 times those of the joints in a straight pipeline under the same intensity of earthquake ground motions. Besides, sudden changes of the peak seismic deformations occur at the push-on joints adjacent to the flange joints. The pipeline network suffers much more severe seismic damage under the considered maximum earthquake than under the design level of earthquake. The seismic damage mainly concentrates in the site class Ⅳ and the cross junction of the pipelines.
  • [1]
    TOSHIMA T, IWAMOTO T, NAKAJIMA T. 2000. Study on behavior of buried pipes in liquefed ground[C]//12th World Conference on Earthquake Engineering, Auckland, 2000.
    [2]
    李乔, 赵世春. 汶川大地震工程震害分析[M]. 成都: 西南交通大学出版社, 2008.

    LI Qiao, ZHAO Shichun. Analysis of Seismic Damage of Engineering Structures in Wenchuan Earthquake[M]. Chengdu: Southwest Jiaotong University Press, 2008. (in Chinese)
    [3]
    WHAM B P, DASHTI S, FRANKE K, et al. Water supply damage caused by the 2016 Kumamoto Earthquake[J]. Lowland Technology International: The Official Journal of the International Association of Lowland Technology. 2017, 19(3): 151-160.
    [4]
    李杰. 生命线工程抗震: 基础理论与应用[M]. 北京: 科学出版社, 2005.

    LI Jie. Structural Response Network Disaster Simulation Lifeline Ground Motion Reliability[M]. Beijing: Science Press, 2005. (in Chinese)
    [5]
    O'ROURKE T D, JEON S S, TOPRAK S, et al. Earthquake response of underground pipeline networks in Christchurch, NZ[J]. Earthquake Spectra, 2014, 30(1): 183-204. doi: 10.1193/030413EQS062M
    [6]
    O'ROURKE M J, LIU X. Response of Buried Pipelines Subjected to Earthquake Effects[R]. La Mirada: University of Buffalo, 1999.
    [7]
    SHIROZU T, YUNE S, ISOYAMA R, et al. Report on damage to water distribution pipes caused by the 1995 Hyogoken-Nanbu (Kobe) earthquake[J]. Terremotos, 1996: 93-110.
    [8]
    冯启民, 高惠瑛, 俞虹桥. 供水系统震害预测专家系统[J]. 地震工程与工程振动, 2000, 20(3): 67-75. doi: 10.3969/j.issn.1000-1301.2000.03.010

    FENG Qimin, GAO Huiying, YU Hongqiao. An expert system for predicting damage to water delivery systems[J]. Earthquake Engineering and Engineering Vibration, 2000, 20(3): 67-75. (in Chinese) doi: 10.3969/j.issn.1000-1301.2000.03.010
    [9]
    冯启民, 高惠瑛, 张伟林. 天津开发区供水系统地震反应分析[J]. 自然灾害学报, 2000, 9(4): 39-44. doi: 10.3969/j.issn.1004-4574.2000.04.007

    FENG Qimin, GAO Huiying, ZHANG Weilin. Seismic performance analysis of water delivery systems in Tianjin Economic Developed Area[J]. Journal of Natural Disasters, 2000, 9(4): 39-44. (in Chinese) doi: 10.3969/j.issn.1004-4574.2000.04.007
    [10]
    NOURZADEH D, MORTAZAVI P, GHALANDARZADEH A, et al. Numerical, experimental and fragility analysis of urban lifelines under seismic wave propagation: study on gas distribution pipelines in the greater Tehran area[J]. Tunnelling and Underground Space Technology. 2020, 106: 103607. doi: 10.1016/j.tust.2020.103607
    [11]
    MAKHOUL N, NAVARRO C, LEE J S, et al. A comparative study of buried pipeline fragilities using the seismic damage to the Byblos wastewater network[J]. International Journal of Disaster Risk Reduction. 2020, 51: 101775. doi: 10.1016/j.ijdrr.2020.101775
    [12]
    中华人民共和国建设部. 室外给水排水和燃气热力工程抗震设计规范: GB 50032—2003[S]. 北京: 中国标准出版社, 2003.

    Ministry of Construction of the People's Republic of China. Code for Seismic Design of Outdoor Water Supply Sewerage Gas and Heating Engineering: GB 50032—2003[S]. Beijing: Standards Press of China, 2003. (in Chinese)
    [13]
    Ductile Iron Pipes, Fittings, Accessories and Their Joints for Water Applications: ISO 2531: 2009[S]. 2009.
    [14]
    Japan Water Works Association JWWA. Seismic Design Specifications for Water Facilities – in Japanese[S]. 1997.
    [15]
    国家质量监督检验检疫总局, 中国国家标准化管理委员会. 压力容器第3部分: 设计: GB/T 150.3—2011[S]. 北京: 中国标准出版社, 2012.

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of the People's Republic of China. Pressure Vessels—Part 3: Design: GB/T 150.3—2011[S]. Beijing: Standards Press of China, 2012. (in Chinese)
    [16]
    American Lifelines Alliance (ALA). Seismic Guidelines for Water Pipelines[M]. ASCE, 2005.
    [17]
    O'ROURKE M, VARGAS-LONDONO T. Analytical model for segmented pipe response to tensile ground strain[J]. Earthquake Spectra, 2016, 32(4): 2533-2548. doi: 10.1193/050415EQS064M
    [18]
    洪华生. 工程中的概率概念[M]. 北京: 中国建筑工业出版社, 2017.

    HONG Huasheng. Probability Concepts in Engineering[M]. Beijing: China Architecture & Building Press, 2017. (in Chinese)
    [19]
    SINGHAL A C, BENAVIDES J C. Axial and bending behavior of buried pipelin e joints[C]// Proceedings of the Fourth National Congress on Pressure Vessel and Piping Technology, American Society of Mechanical Engineers. 1983.
    [20]
    刘为民, 孙绍平. 管道接口的抗震试验研究[C]//第五届全国地震工程会议. 北京, 1998.

    LIU Wei-min, SUN Shao-ping. Shaking table test of pipe with junctions[C]// Proceeding of Fifth China Symposia on Earthquake Engineering. Beijing, 1998. (in Chinese)
    [21]
    周静海, 赵海艳, 魏立群. 球墨铸铁供水管线在地震作用下功能性实验分析[J]. 沈阳建筑大学学报(自然科学版), 2008, 24(2): 196-199. https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200802005.htm

    ZHOU Jinghai, ZHAO Haiyan, WEI Liqun. Experimental research on functionality of ductile cast iron pipelines under the earthquake[J]. Journal of Shenyang Jianzhu University (Natural Science), 2008, 24(2): 196-199. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYJZ200802005.htm
    [22]
    刘威, 黄鹭娜, 李杰. 供水管线渗漏试验研究[J]. 地震工程与工程振动, 2011, 31(4): 167-173.

    LIU Wei, HUANG Luna, LI Jie. Experiment on leakage of water pipelines[J]. Journal of Earthquake Engineering and Engineering Vibration, 2011, 31(4): 167-173. (in Chinese)
    [23]
    傅俊. 供水管线接口变形试验与抗震可靠度研究[D]. 上海: 同济大学, 2013.

    FU Jun. Displacement Experiment and Seismic Reliability Study of Water Supply Pipeline Joint[D]. Shanghai: Tongji University, 2013. (in Chinese)
    [24]
    WHAM B P, DENIS O'ROURKE T. Jointed pipeline response to large ground deformation[J]. Journal of Pipeline Systems Engineering and Practice, 2016, 7(1): 4015001- 4015009.
    [25]
    王颂翔. 承插式给水管道安全评价研究[D]. 大连: 大连理工大学, 2015.

    WANG Songxiang. Study on Safety Evaluation of Water Supply Pipelines with the Socket and Spigot Joint[D]. Dalian: Dalian University of Technology, 2015. (in Chinese)
    [26]
    李冠潮. 管道柔性接口轴向力学性能及功能性试验研究[D]. 郑州: 河南工业大学, 2020.

    LI Guanchao. Experimental Study on The Axial Mechanical Properties and Functional Properties of Flexible Joints in Pipelines[D]. Zhengzhou: Henan University of Technology, 2020. (in Chinese)
    [27]
    李晓晓, 钟紫蓝, 侯本伟, 等. 大型球墨铸铁管承插式接口力学性能研究[J]. 特种结构, 2020, 37(4): 47-55. https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG202004010.htm

    LI Xiaoxiao, ZHONG Zilan, HOU Benwei, et al. Study on mechanical behaviors of push-on joints of large-diameter ductile iron pipelines[J]. Special Structures, 2020, 37(4): 47-55. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TZJG202004010.htm
    [28]
    钟紫蓝, 王书锐, 杜修力, 等. 管道承插式接口轴向力学性能试验研究与数值模拟[J]. 工程力学, 2019, 36(3): 224-230, 239. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903024.htm

    ZHONG Zilan, WANG Shurui, DU Xiuli, et al. Experimental and numerical study on axial mechanical properties of pipeline under pseudo-static loading[J]. Engineering Mechanics, 2019, 36(3): 224-230, 239. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201903024.htm
    [29]
    球墨铸铁给排水管道工程施工及验收规范技术要求: ZXB/T 0202—2013[S]. 2013.

    The Code for Construction and Acceptance of Water and Sewerage Ductile Iron Pipeline Works Specification Requirement: ZXB/T 0202—2013[S]. 2013. (in Chinese)
    [30]
    Rubber Seals-Joint Rings for Water: ISO 4633—2015[S]. 2015.
    [31]
    范重, 张康伟, 张郁山, 等. 视波速确定方法与行波效应研究[J]. 工程力学, 2021, 38(6): 47-61. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106005.htm

    FAN Zhong, ZHANG Kangwei, ZHANG Yushan, et al. Study on apparent wave velocity calculation method and on travelling wave effect[J]. Engineering Mechanics, 2021, 38(6): 47-61. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX202106005.htm
  • Cited by

    Periodical cited type(8)

    1. 张奥宇,杨科,池小楼,张杰. 基于GA-BP神经网络岩石单轴抗压强度预测模型研究. 煤. 2025(01): 6-10+17 .
    2. 宋超,赵腾远. 黏土路基回弹模量预测及贝叶斯模型选择研究. 长沙理工大学学报(自然科学版). 2024(01): 88-99 .
    3. 王彦武,郭青林,赵腾远,张燕芳,刘晓颖,裴强强,朱毓. 基于温度补偿的5TE传感器含水率监测数据校正方法研究. 石窟与土遗址保护研究. 2024(01): 4-16 .
    4. 陈朗,陈娱,何俊霖,吕淑宁. 基于前期累积降雨和高斯过程回归模型的滑坡位移预测. 岩石力学与工程学报. 2024(S1): 3491-3497 .
    5. 郑可馨,吴益平,李江,苗发盛,柯超. 基于高斯过程回归的岩体结构面粗糙度系数预测模型. 地质科技通报. 2024(04): 252-261 .
    6. 刘杰. 基于高斯过程时间序列回归最优核函数和历史点数的锚杆支护钻进压力预测. 煤炭学报. 2024(S1): 92-107 .
    7. 原钢,刘杰. 基于多参数输入与输出高斯过程回归的锚杆支护状态预测. 液压气动与密封. 2023(11): 47-50 .
    8. 赵腾远,宋超,谌文武,郭志谦,许领. 基于k-means聚类与高斯过程分类的土遗址裂隙病害发育等级概率预测. 石窟与土遗址保护研究. 2023(04): 75-86 .

    Other cited types(1)

Catalog

    Article views (212) PDF downloads (61) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return