• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIANG Rong-zhu, WANG Kai-chao, HUANG Liang, SUN Lian-wei, LI Zhong-chao, ZHANG Li, WU Xiao-jian. Analytical solution for longitudinal equivalent bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 212-223. DOI: 10.11779/CJGE202202002
Citation: LIANG Rong-zhu, WANG Kai-chao, HUANG Liang, SUN Lian-wei, LI Zhong-chao, ZHANG Li, WU Xiao-jian. Analytical solution for longitudinal equivalent bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 212-223. DOI: 10.11779/CJGE202202002

Analytical solution for longitudinal equivalent bending stiffness of quasi-rectangular shield tunnels

More Information
  • Received Date: May 09, 2021
  • Available Online: September 22, 2022
  • According to the sectional characteristics of quasi-rectangular shield tunnels, the neutral axes located at four different positions, the upper section edge (the ring joint is completely closed), the section vault, the section waist and the section invert, are analyzed, respectively. The analytical solution for the equivalent longitudinal bending stiffness of quasi-rectangular shield tunnels is then derived by further considering the pretightening force of bolts and the influence range of circumferential joints. The relative influencing factors on the longitudinal equivalent stiffness are also investigated. It is shown that when the applied bending moment is smaller than the activating one, the circumferential joint is completely closed, the effective efficiency of equivalent bending stiffness is 1, and the neutral axis is located at the upper edge of the section. By further increasing the applied bending moment, the circumferential joint starts to partially separate. Simultaneously, the position of the neutral axis moves down gradually. The equivalent longitudinal bending stiffness decreases with the increase of the applied bending moment. The effective efficiency of the equivalent longitudinal bending stiffness decreases first rapidly and then slowly with the increase of the coefficient of circumferential seam action zone. The greater the pretightening force of bolts is, the larger the equivalent longitudinal bending stiffness is. Subsequently, the position of the neutral axis moves up. With the increase of width-height ratio, the effective efficiency of the equivalent bending stiffness decreases gradually, the position of the neutral axis moves down subsequently, and a turning point appears when the position angle of the neutral axis is equal to the center angle of small arc.
  • [1]
    朱瑶宏, 朱雁飞, 黄德中, 等. 类矩形盾构法隧道关键技术研究与应用[J]. 隧道建设, 2017, 37(9): 1055–1062. https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201709001.htm

    ZHU Yao-hong, ZHU Yan-fei, HUANG De-zhong, et al. Development and application of key technologies to quasi-rectangular shield tunneling[J]. Tunnel Construction, 2017, 37(9): 1055–1062. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JSSD201709001.htm
    [2]
    小泉淳, 村上博智, 西野健三. ツールドトネルの轴方向特性のモデルイヒにつぃて[C]// 土木学会论文集. 1988: 79–88.

    KOIZUMI A, MURAKAMI H, NISHINO K. A Model of the Directional Properties of Tool de Tonel[C]// Journal of the Japan Society of Civil Engineers, 1988: 79–88. (in Japanese)
    [3]
    志波由纪夫, 川岛一彦, 大日方尚己, 等. 应答变位法にょるツ—ルドトンネルの地震时断面力の算定法[C]// 土木学会论文集, 1989: 385–394.

    SHIWA Y, KAWASHIMA K, ODATEKA N, et al. A method for calculating the seismic cross-sectional force of a tunnel with a negative response method[C]// Journal of the Japan Society of Civil Engineers, 1989: 385–394. (in Japanese)
    [4]
    林永国. 地铁隧道纵向变形结构性能研究[D]. 上海: 同济大学, 2001.

    LIN Yong-guo. Study on the Performance of Longitudinal Deformation Structure of Metro Tunnel[D]. Shanghai: Tongji University, 2001. (in Chinese)
    [5]
    廖少明. 圆形隧道纵向剪切传递效应研究[D]. 上海: 同济大学, 2002.

    LIAO Shao-ming. Study on Longitudinal Shear Transfer Effect of Circular Tunnel[D]. Shanghai: Tongji University, 2002. (in Chinese)
    [6]
    WU H N, SHEN S L, LIAO S M, et al. Longitudinal structural modelling of shield tunnels considering shearing dislocation between segmental rings[J]. Tunnelling and Underground Space Technology, 2015, 50: 317–323. doi: 10.1016/j.tust.2015.08.001
    [7]
    张文杰, 徐旭, 李向红, 等. 广义的盾构隧道纵向等效连续化模型研究[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3938–3944. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2098.htm

    ZHANG Wen-jie, XU Xu, LI Xiang-hong, et al. Research on generalized longitudinal equivalent continuous model of shield tunnels[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3938–3944. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2009S2098.htm
    [8]
    叶飞, 何川, 朱合华, 等. 考虑横向性能的盾构隧道纵向等效刚度分析[J]. 岩土工程学报, 2011, 33(12): 1870–1876. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112010.htm

    YE Fei, HE Chuan, ZHU He-hua, et al. Longitudinal equivalent rigidity analysis of shield tunnel considering transverse characteristics[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1870–1876. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112010.htm
    [9]
    李翔宇, 刘国彬, 杨潇, 等. 基于修正纵向等效连续化模型的隧道变形受力研究[J]. 岩土工程学报, 2014, 36(4): 662–670. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404012.htm

    LI Xiang-yu, LIU Guo-bin, YANG Xiao, et al. Deformation and stress of tunnel structures based on modified longitudinal equivalent continuous model[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 662–670. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201404012.htm
    [10]
    耿萍, 陈枰良, 张景, 等. 轴力和弯矩共同作用下盾构隧道纵向非线性等效抗弯刚度研究[J]. 岩石力学与工程学报, 2017, 36(10): 2522–2534. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710021.htm

    GENG Ping, CHEN Ping-liang, ZHANG Jing, et al. Nonlinear longitudinal equivalent bending stiffness of shield tunnel under the combined effect of axial force and bending moment[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(10): 2522–2534. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201710021.htm
    [11]
    徐凌. 软土盾构隧道纵向沉降研究[D]. 上海: 同济大学, 2005.

    XU Ling. Study on Longitudinal Settlement of Soft Soil Shield Tunnel[D]. Shanghai: Tongji University, 2005. (in Chinese)
    [12]
    梁荣柱, 夏唐代, 胡军华, 等. 新建隧道近距离上穿对既有地铁隧道纵向变形影响分析[J]. 岩土力学, 2016, 37(增刊1): 391–399. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1051.htm

    LIANG Rong-zhu, XIA Tang-dai, HU Jun-hua, et al. Analysis of longitudinal displacement of existing metro tunnel due to construction of above-crossing new tunnel in close distance[J]. Rock and Soil Mechanics, 2016, 37(S1): 391–399. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2016S1051.htm
    [13]
    许有俊, 陶连金, 文中坤, 等. 新建地铁隧道上穿既有隧道引起的结构隆起变形[J]. 中国铁道科学, 2014, 35(6): 48–54. doi: 10.3969/j.issn.1001-4632.2014.06.08

    XU You-jun, TAO Lian-jin, WEN Zhong-kun, et al. Upheaval deformation induced by newly-built metro tunnel upcrossing existing tunnel[J]. China Railway Science, 2014, 35(6): 48–54. (in Chinese) doi: 10.3969/j.issn.1001-4632.2014.06.08
    [14]
    LIANG R Z, XIA T D, HONG Y, et al. Effects of above-crossing tunnelling on the existing shield tunnels[J]. Tunnelling and Underground Space Technology, 2016, 58(9): 159–176.
    [15]
    康成, 叶超, 梁荣柱, 等. 基坑开挖诱发下卧盾构隧道纵向非线性变形研究[J]. 岩石力学与工程学报, 2020, 39(11): 2341–2350. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011017.htm

    KANG Cheng, YE Chao, LIANG Rong-zhu, et al. Nonlinear longitudinal deformation of underlying shield tunnels induced by foundation excavation[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2341–2350. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011017.htm
    [16]
    张子新, 朱叶艇, 朱雁飞, 等. 大断面异形盾构衬砌结构纵向力学性能[J]. 同济大学学报(自然科学版), 2017, 45(5): 684–691. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201705010.htm

    ZHANG Zi-xin, ZHU Ye-ting, ZHU Yan-fei, et al. Study on the longitudinal mechanical behavior of large shield lining structure with a specialshaped cross-section[J]. Journal of Tongji University (Natural Science), 2017, 45(5): 684–691. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201705010.htm
    [17]
    黄亮, 梁荣柱, 吴小建, 等. 类矩形盾构隧道纵向抗弯刚度分析[J]. 岩土工程学报, 2019, 41(11): 2094–2102. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911017.htm

    HUANG Liang, LIANG Rong-zhu, WU Xiao-jian, et al. Longitudinal bending stiffness of quasi-rectangular shield tunnels[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11): 2094–2102. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201911017.htm
    [18]
    鲁志鹏. 基于静态量测数据的盾构法地铁隧道建设和运营安全评价研究[D]. 上海: 同济大学, 2008.

    LU Zhi-peng. Study on the Safety Evaluation of Tunnel Construction and Operation Based on Static Measurement Data[D]. Shanghai: Tongji University, 2008. (in Chinese)
  • Cited by

    Periodical cited type(17)

    1. 黄林冲,张燕丽,梁禹,林存刚,蒋凯,王晓良. 装配式地铁车站结构接头非线性弯曲模式识别. 同济大学学报(自然科学版). 2025(02): 187-195 .
    2. 周晓舟,李志刚,林秀桂. 考虑纵向轴力的矩形盾构隧道纵向抗弯刚度有效率研究. 特种结构. 2025(01): 10-15 .
    3. 许有俊,张正曦,张朝,刘天宇,张旭. 矩形顶管隧道F承插型接头等效刚度理论研究. 岩土工程学报. 2025(03): 506-515 . 本站查看
    4. 黄林冲,蒋凯,梁禹,张燕丽,丁泽,杜风华. 类矩形装配式地铁车站纵向等效抗弯刚度研究. 铁道科学与工程学报. 2024(04): 1554-1566 .
    5. 江学辉,颜建伟,罗文俊,李佳宝,徐长节. 纵向压力和加固钢板对隧道力学性能影响的解析解. 岩土力学. 2024(06): 1623-1632 .
    6. 江学辉,颜建伟,罗文俊,刘天宇,徐长节. 纵向槽钢和轴力共同作用的盾构隧道等效刚度解析解. 岩土工程学报. 2024(10): 2166-2173 . 本站查看
    7. 叶肖伟,魏瑜均,陈云敏,范毅雄. 盾构隧道纵向抗弯刚度双折减计算模型. 中国公路学报. 2024(10): 139-150 .
    8. 刘颖彬,廖少明,李志义,钟铧炜,滕政伟. 矩形管片隧道纵向等效抗弯刚度与抗弯性能研究. 同济大学学报(自然科学版). 2024(12): 1823-1833 .
    9. 梁荣柱,曹世安,向黎明,康成,陈峰军,李忠超,柯宅邦,郭杨. 地表堆载作用下盾构隧道纵向受力机制试验研究. 岩石力学与工程学报. 2023(03): 736-747 .
    10. 刘顺水. 软弱地层下穿高铁超大矩形顶管盾构隧道施工稳定性研究. 高速铁路技术. 2023(02): 6-12 .
    11. 刘颖彬,廖少明,刘孟波,陈立生,徐伟忠,华建雄,刘浩. 盾构隧道纵向等效抗扭刚度与抗扭性能研究. 中南大学学报(自然科学版). 2023(06): 2220-2232 .
    12. 周浙件,范毅雄,方燃,边学成. 地基沉降引发输水盾构隧道复合结构受弯分析. 浙江大学学报(工学版). 2023(12): 2476-2488 .
    13. 章源,梁荣柱,李忠超,王舒敏,吴文兵,范默涵,蒋熙. 双圆盾构隧道结构纵向等效抗弯刚度解析解. 隧道建设(中英文). 2023(12): 2077-2088 .
    14. 黄大维,徐长节,罗文俊,姜浩,胡光静,詹涛. 考虑横向与纵向刚度相似的模型盾构隧道设计方法. 岩土工程学报. 2023(11): 2299-2307 . 本站查看
    15. 谷淡平. 填土挡墙中锚定板加固作用机理及影响因素分析. 建筑结构. 2023(S2): 2672-2678 .
    16. 马成贤,罗驰,李新志. 盾构隧道拱顶背后空洞引起管片裂损机理研究. 铁道建筑. 2022(02): 114-117 .
    17. 邓博团,申超凡. 直螺栓连接预制综合管廊刚度计算方法. 科学技术与工程. 2022(29): 13028-13036 .

    Other cited types(6)

Catalog

    Article views (275) PDF downloads (240) Cited by(23)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return