• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SHEN Zhifu, SHEN Guangming, WANG Zhihua, GAO Hongmei. Macro- and meso-scopic deformation mechanisms of EPS-mixed soils based on refined numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 931-939. DOI: 10.11779/CJGE20220136
Citation: SHEN Zhifu, SHEN Guangming, WANG Zhihua, GAO Hongmei. Macro- and meso-scopic deformation mechanisms of EPS-mixed soils based on refined numerical simulation[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 931-939. DOI: 10.11779/CJGE20220136

Macro- and meso-scopic deformation mechanisms of EPS-mixed soils based on refined numerical simulation

More Information
  • Received Date: February 07, 2022
  • Available Online: May 18, 2023
  • The EPS-mixed soils are composed of two solid phases (cemented soils and EPS beads) with the unique mesoscopic structure. The macroscopic behaviour of the EPS-mixed soils has been widely investigated so far, but the focus has seldom been put on the mesoscopic behaviour. In this study, following the frameworks of Mohr-Coulomb model and Drucker-Prager model respectively, the constitutive descriptions of the cemented soils and the EPS materials are developed based on their mechanical test results. Besides, the strain hardening/softening laws of the cemented soil-EPS material interface are summarized based on the interface shear tests. The refined numerical simulations of triaxial shear tests on the EPS-mixed soils are carried out, with which the macroscopic stress-strain behavior and deformation modes of the EPS-mixed soil specimens are replicated. The refined numerical simulations reveal that the three types of deformation modes of the specimens (shear banding, local lateral expansion, overall uniform deformation) can be attributed to the non-uniform mesoscopic mechanical responses. The distinct mechanical behavior of the cemented soils and the EPS materials is the origin of non-uniform stress and strain distributions, and such non-uniformity is enhanced by the non-uniform spatial distribution of the EPS beads. The two factors collaboratively determine the non-uniformity of the macroscopic deformation observed for the EPS-mixed soil specimen.
  • [1]
    梅利芳, 徐光黎. 纤维聚苯乙烯泡沫颗粒轻质土的制备及力学性能[J]. 复合材料学报, 2016, 33(10): 2355-2362. doi: 10.13801/j.cnki.fhclxb.20160621.001

    MEI Lifang, XU Guangli. Preparation and mechanical properties of fiber expanded polystyrene particle lightweight soil[J]. Acta Materiae Compositae Sinica, 2016, 33(10): 2355-2362. (in Chinese) doi: 10.13801/j.cnki.fhclxb.20160621.001
    [2]
    TIWARI N, SATYAM N, KUMAR SHUKLA S. An experimental study on micro-structural and geotechnical characteristics of expansive clay mixed with EPS granules[J]. Soils and Foundations, 2020, 60(3): 705-713. doi: 10.1016/j.sandf.2020.03.012
    [3]
    GAO H M, CHEN Y M, LIU H L, et al. Creep behavior of EPS composite soil[J]. Science China Technological Sciences, 2012, 55(11): 3070-3080. doi: 10.1007/s11431-012-4967-6
    [4]
    HOU T S, MA W G, YANG K X. One-dimensional compression creep characteristics of light weight soil mixed with Weihe River mud and EPS particles[J]. Geotechnical and Geological Engineering, 2021, 39(6): 4341-4353. doi: 10.1007/s10706-021-01765-4
    [5]
    GAO H M, BU C Y, WANG Z H, et al. Dynamic characteristics of expanded polystyrene composite soil under traffic loadings considering initial consolidation state[J]. Soil Dynamics and Earthquake Engineering, 2017, 102: 86-98. doi: 10.1016/j.soildyn.2017.08.012
    [6]
    GAO Y, WANG S, CHEN C. A united deformation-strength framework for Lightweight Sand–EPS Beads Soil (LSES) under cyclic loading[J]. Soil Dynamics and Earthquake Engineering, 2011, 31(8): 1144-1153. doi: 10.1016/j.soildyn.2011.04.002
    [7]
    李明东, 田安国. 泡沫塑料混合轻质土在循环荷载下的力学性质[J]. 岩土工程学报, 2010, 32(11): 1806-1810. http://www.cgejournal.com/cn/article/id/8467

    LI Mingdong, TIAN Anguo. Mechanical properties of EPS beads mixed lightweight soil under cyclic loading[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(11): 1806-1810. (in Chinese) http://www.cgejournal.com/cn/article/id/8467
    [8]
    庄心善, 周睦凯, 陶高梁, 等. 循环荷载下发泡聚苯乙烯改良膨胀土动弹性模量与阻尼比试验研究[J]. 岩土力学, 2021, 42(9): 2427-2436. doi: 10.16285/j.rsm.2021.0061

    ZHUANG Xinshan, ZHOU Mukai, TAO Gaoliang, et al. Experimental study of dynamic elastic modulus and damping ratio of improved expansive soil under cyclic loading by expanded polystyrene[J]. Rock and Soil Mechanics, 2021, 42(9): 2427-2436. (in Chinese) doi: 10.16285/j.rsm.2021.0061
    [9]
    KAZEMPOUR S, CHENARI R J, AHMADI H, et al. Assessment of the compression characteristics and coefficient of lateral earth pressure of aggregate- expanded polystyrene beads composite fill-backfill using large oedometer experiments[J]. Construction and Building Materials, 2021, 302: 124145. doi: 10.1016/j.conbuildmat.2021.124145
    [10]
    侯天顺, 徐光黎. 发泡颗粒混合轻量土三轴应力-应变-孔压特性试验[J]. 中国公路学报, 2009, 22(6): 10-17. doi: 10.3321/j.issn:1001-7372.2009.06.002

    HOU Tianshun, XU Guangli. Experiment on triaxial pore water pressure-stress-strain characteristics of foamed particle light weight soil[J]. China Journal of Highway and Transport, 2009, 22(6): 10-17. (in Chinese) doi: 10.3321/j.issn:1001-7372.2009.06.002
    [11]
    肖杨, 邓安. 基于椭圆-抛物双屈服面模型的砂-聚苯乙烯颗粒轻质填料应力应变分析[J]. 岩土工程学报, 2009, 31(9): 1467-1471. doi: 10.3321/j.issn:1000-4548.2009.09.024

    XIAO Yang, DENG An. Stress-strain analyses of sand-EPS lightweight-bead fills based on elliptic-parabolic yield surfaces model[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(9): 1467-1471. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.09.024
    [12]
    朱伟, 姬凤玲, 马殿光, 等. 疏浚淤泥泡沫塑料颗粒轻质混合土的抗剪强度特性[J]. 岩石力学与工程学报, 2005, 24(增刊2): 5721-5726.

    ZHU Wei, JI Fengling, MA Dianguang, et al. Shear strength properties of lightweight bead-treated soil made from dredged silt[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(S2): 5721-5726. (in Chinese)
    [13]
    姬凤玲, 董卫国, 李强. 淤泥EPS颗粒轻质土单向压缩下渐进性破坏研究[J]. 环境科学与技术, 2016, 39(9): 45-49. https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201609008.htm

    JI Fengling, DONG Weiguo, LI Qiang. Study on the progressive failure of lightweight EPS-bead treated soil made from dredging silt under uniaxial compression[J]. Environmental Science & Technology, 2016, 39(9): 45-49. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-FJKS201609008.htm
    [14]
    王庶懋, 高玉峰. 砂土与EPS颗粒混合的轻质土(LSES)细观结构的CT研究[J]. 岩土力学, 2006, 27(12): 2137-2142. doi: 10.3969/j.issn.1000-7598.2006.12.010

    WANG Shumao, GAO Yufeng. Research on meso-structure of lightweight sand-EPS beads soil (LSES) using CT[J]. Rock and Soil Mechanics, 2006, 27(12): 2137-2142. (in Chinese) doi: 10.3969/j.issn.1000-7598.2006.12.010
    [15]
    YAGHOOBZADEH S, AZIZKANDI A S, SALEHZADEH H, et al. Effect of EPS beads on the behavior of sand-EPS and slope stability using triaxial and centrifuge tests[J]. International Journal of Civil Engineering, 2021, 19(11): 1269-1282. doi: 10.1007/s40999-021-00617-9
    [16]
    顾欢达, 顾熙. 两相体模型在评价发泡颗粒轻质土应力-应变特性中的应用[J]. 岩土工程学报, 2006, 28(8): 994-997. doi: 10.3321/j.issn:1000-4548.2006.08.012

    GU Huanda, GU Xi. Application of double-phase model to evaluate stress-strain of foamed beads light soil[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(8): 994-997. (in Chinese) doi: 10.3321/j.issn:1000-4548.2006.08.012
    [17]
    刘汉龙, 董金梅, 周云东, 等. 聚苯乙烯轻质混合土应力-应变特性分析[J]. 岩土工程学报, 2004, 26(5): 579-583. doi: 10.3321/j.issn:1000-4548.2004.05.001

    LIU Hanlong, DONG Jinmei, ZHOU Yundong, et al. Study on the stress-strain characteristics of light heterogeneous soil mixed with expanded polystyrene[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(5): 579-583. (in Chinese) doi: 10.3321/j.issn:1000-4548.2004.05.001
    [18]
    侯天顺. 特征含水率对轻量土基本性质的影响规律[J]. 岩土力学, 2012, 33(9): 2581-2587. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209008.htm

    HOU Tianshun. Influence law of characteristic water content on basic properties of light weight soil[J]. Rock and Soil Mechanics, 2012, 33(9): 2581-2587. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201209008.htm
    [19]
    马时冬. 聚苯乙烯泡沫塑料轻质填土(SLS)的特性[J]. 岩土力学, 2001, 22(3): 245-248, 314. doi: 10.3969/j.issn.1000-7598.2001.03.002

    MA Shidong. The properties of stabilized light soil (SLS) with expanded polystyrene[J]. Rock and Soil Mechanics, 2001, 22(3): 245-248, 314. (in Chinese) doi: 10.3969/j.issn.1000-7598.2001.03.002
    [20]
    ASHNA K N, CHANDRAKARAN S. Experimental Study on stress-strain behaviour of EPS beads sand mixture[C]//International Conference on Geotechniques for Infrastructure Projects 27th & 28th February. Thiruvananthapura, 2017.
    [21]
    NAWGHARE S M, MANDAL J N. Effectiveness of expanded polystyrene (EPS) beads size on fly ash properties[J]. International Journal of Geosynthetics and Ground Engineering, 2020, 6(1): 1-11.
    [22]
    兰鑫, 侯天顺, 杨艳, 等. EPS颗粒混合轻量土动力变形特性离散元分析[J]. 土木工程与管理学报, 2020, 37(3): 147-154.

    LAN Xin, HOU Tianshun, YANG Yan, et al. Discrete element analysis on dynamic deformation characteristics of light weight soil mixed with EPS particles[J]. Journal of Civil Engineering and Management, 2020, 37(3): 147-154. (in Chinese)
    [23]
    OMINE K, OCHIAI H, YASUFUKU N. Evaluation of strength-deformation properties of light-weight soils based on two-phase mixture model[C]//Twelfth Southeast Asian Geotechnical Conference. Kulua, 1996.
    [24]
    ATMATZIDIS D K, MISSIRLIS E G, CHRYSIKOS D A. An investigation of EPS Geofoam behaviour in compression[C]//EPS Geofoam 2001—Third International Conference. Salt Lake City, 2001.
    [25]
    DUSKOV M. Materials research on EPS20 and EPS15 under representative conditions in pavement structures[J]. Geotextiles and Geomembranes, 1997, 15(1/2/3): 147-181.
    [26]
    HAZARIKA H. Stress-strain modeling of EPS geofoam for large-strain applications[J]. Geotextiles and Geomembranes, 2006, 24(2): 79-90.
    [27]
    OSSA A, ROMO M P. Micro- and macro-mechanical study of compressive behavior of expanded polystyrene geofoam[J]. Geosynthetics International, 2009, 16(5): 327-338.
    [28]
    PREBER T, BANG S, CHUNG Y, et al. Behavior of expanded polystyrene blocks[J]. Transportation Research Record, 1994(1462): 36-46.
    [29]
    LEO C J, KUMRUZZAMAN M, WONG H, et al. Behavior of EPS geofoam in true triaxial compression tests[J]. Geotextiles and Geomembranes, 2008, 26(2): 175-180.
    [30]
    WONG H, LEO C J. A simple elastoplastic hardening constitutive model for EPS geofoam[J]. Geotextiles and Geomembranes, 2006, 24(5): 299-310.
    [31]
    EDO. Expanded Polystyrene Construction Method[M]. Tokyo: Riko Tosho Publishers, 1992.
    [32]
    HORVATH J S. Geofoam Geosynthetic[M]. New York: Horvath Engineering, 1995.
    [33]
    KANG Y, LI X, Tan J. Uniaxial tension and tensile creep behaviors of EPS[J]. Journal of Central South University of Technology, 2008, 15(1): 202-205.
    [34]
    HORVATH J S. Expanded polystyrene (EPS) geofoam: an introduction to material behavior[J]. Geotextiles and Geomembranes, 1994, 13(4): 263-280.
    [35]
    CHUN B S, LIM H, SAGONG M, et al. Development of a hyperbolic constitutive model for expanded polystyrene (EPS) geofoam under triaxial compression tests[J]. Geotextiles and Geomembranes, 2004, 22(4): 223-237.
  • Cited by

    Periodical cited type(2)

    1. 顾维,郭芳,郭一鹏. 基于灰色系统的深厚软基上部路堤沉降预测研究. 武汉理工大学学报(交通科学与工程版). 2024(01): 110-114 .
    2. 孙中秋,朱明,贾飞扬,徐益飞. 矩形明洞回填黄土对落石冲击响应的数值模拟研究. 现代隧道技术. 2024(06): 111-117+128 .

    Other cited types(2)

Catalog

    Article views (406) PDF downloads (135) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return