• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHENG Zheng, YANG Gang, ZHANG Shi-xing, SUN An-yuan, KONG Gang-qiang, WANG Yin, YANG Qing. Development and verification tests of deep-sea sediment-structure interface equipment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 173-180. DOI: 10.11779/CJGE202201017
Citation: ZHENG Zheng, YANG Gang, ZHANG Shi-xing, SUN An-yuan, KONG Gang-qiang, WANG Yin, YANG Qing. Development and verification tests of deep-sea sediment-structure interface equipment[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 173-180. DOI: 10.11779/CJGE202201017

Development and verification tests of deep-sea sediment-structure interface equipment

More Information
  • Received Date: February 08, 2021
  • Available Online: September 22, 2022
  • The characteristics of deep-sea sediment-structure interface is one of the key problems in the design and calculation of offshore platform structures. However, there is a lack of experimental devices and methods for the characteristics of sea sediment-structure interface. Based on the geotechnical static-dynamic hydraulic triaxial shear apparatus in Dalian University of Technology, a set of structure-soil interface instrument is developed. The development ideas, technical advantages and application methods of the test devices are introduced. The reliability is verified through the tests on the characteristics of undrained deep-sea sediment structure interface under static and dynamic loads. The influences of roughness and dynamic load ICSR on the mechanical behavior and the development law of pore pressure of the interface are preliminarily discussed. The results show that there is no obvious strain-softening phenomenon in the development of the interface stress during the installation process of low roughness pile, while the stress curve shows a trend of strain-hardening under the influences of high roughness. From the pore pressure accumulation curve, the interface soil has experienced the trend of shear shrinkage first and then dilatancy, and with the increase of roughness, the failure surface gradually migrates from the interface to the soil. Under the dynamic cyclic loads, roughness II structure presents pull-up sliding phenomenon with the increase of cyclic times, and along with the accumulation of dynamic pore pressure, the interface presents stiffness-weakening phenomenon. The cumulative plastic strain of the interface tends to be stable when the cyclic times is 300, and finally the normalized dynamic pore pressure of the interface is 0.22. The instrument provides a precondition for the studies on the characteristics and mechanism of deep-sea sediment-structure interface as well as the establishment of constitutive model for the interface.
  • [1]
    DESAI C S, PRADHAN S K, COHEN D. Cyclic testing and constitutive modeling of saturated sand–concrete interfaces using the disturbed state concept[J]. International Journal of Geomechanics, 2005, 5(4): 286–294. doi: 10.1061/(ASCE)1532-3641(2005)5:4(286)
    [2]
    DI DONNA A, FERRARI A, LALOUI L. Experimental investigations of the soil–concrete interface: physical mechanisms, cyclic mobilization, and behaviour at different temperatures[J]. Canadian Geotechnical Journal, 2016, 53(4): 659–672. doi: 10.1139/cgj-2015-0294
    [3]
    殷宗泽, 朱泓, 许国华. 土与结构材料接触面的变形及其数学模拟[J]. 岩土工程学报, 1994, 16(3): 14–22. doi: 10.3321/j.issn:1000-4548.1994.03.002

    YIN Zong-ze, ZHU Hong, XU Guo-hua. Numerical simulation of the deformation in the interface between soil and structural material[J]. Chinese Journal of Geotechnical Engineering, 1994, 16(3): 14–22. (in Chinese) doi: 10.3321/j.issn:1000-4548.1994.03.002
    [4]
    张嘎, 张建民. 大型土与结构接触面循环加载剪切仪的研制及应用[J]. 岩土工程学报, 2003, 25(2): 149–153. doi: 10.3321/j.issn:1000-4548.2003.02.005

    ZHANG Ga, ZHANG Jian-min. Development and application of cyclic shear apparatus for soil-structure interface[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 149–153. (in Chinese) doi: 10.3321/j.issn:1000-4548.2003.02.005
    [5]
    夏红春, 周国庆. 土−结构接触面剪切力学特性及其影响因素试验[J]. 中国矿业大学学报, 2010, 39(6): 831−836. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201006008.htm

    XIA Hong-chun, ZHOU Guo-qing. Experimental study of the shear mechanical characteristics at a soil-structure interface and the factors affecting them[J]. Journal of China University of Mining and Technology, 2010, 39(6): 831–836. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZGKD201006008.htm
    [6]
    CHEN X B, ZHANG J S, XIAO Y J, et al. Effect of roughness on shear behavior of red clay–concrete interface in large-scale direct shear tests[J]. Canadian Geotechnical Journal, 2015, 52(8): 1122–1135. doi: 10.1139/cgj-2014-0399
    [7]
    UESUGI M, KISHIDA H, TSUBAKIHARA Y. Friction between sand and steel under repeated loading[J]. Soils and Foundations, 1989, 29(3): 127–137. doi: 10.3208/sandf1972.29.3_127
    [8]
    冯大阔, 张建民. 粗粒土与结构接触面静动力学特性的大型单剪试验研究[J]. 岩土工程学报, 2012, 34(7): 1201–1208. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207006.htm

    FENG Da-kuo, ZHANG Jian-min. Monotonic and cyclic behaviors of coarse-grained soil-structure interface using large-scale simple shear device[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1201–1208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207006.htm
    [9]
    VIEIRA C S, LOPES M D L, CALDEIRA L. Sand-nonwoven geotextile interfaces shear strength by direct shear and simple shear tests[J]. Geomechanics and Engineering, 2015, 9(5): 601–618. doi: 10.12989/gae.2015.9.5.601
    [10]
    刘方成, 陈巨龙, 王海东, 等. 一种大型循环单剪试验装置研究[J]. 岩土力学, 2016, 37(11): 3336–3346. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611037.htm

    LIU Fang-cheng, CHEN Ju-long, WANG Hai-dong, et al. Development of a large-scale cyclic simple shear test apparatus[J]. Rock and Soil Mechanics, 2016, 37(11): 3336–3346. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201611037.htm
    [11]
    楼晓明, 李德宁, 杨敏, 等. 土体常规加卸荷对桩基影响模型试验系统研制与应用[J]. 岩土工程学报, 2012, 34(8): 1509–1515. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201208027.htm

    LOU Xiao-ming, LI De-ning, YANG Min, et al. Development and application of simulation system for model piles impacted by routine loading and unloading of soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1509–1515. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201208027.htm
    [12]
    邬俊杰, 刘帅君, 陈锦剑, 等. 桩土接触面三轴模拟试验设备研究与应用[J]. 上海交通大学学报, 2014, 48(11): 1523–1527, 1535. https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201411004.htm

    WU Jun-jie, LIU Shuai-jun, CHEN Jin-jian, et al. Development and application of a triaxial model test system for pile-soil interface[J]. Journal of Shanghai Jiao Tong University, 2014, 48(11): 1523–1527, 1535. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHJT201411004.htm
    [13]
    HEBELER G L, MARTINEZ A, FROST J D. Shear zone evolution of granular soils in contact with conventional and textured CPT friction sleeves[J]. KSCE Journal of Civil Engineering, 2016, 20(4): 1267–1282. doi: 10.1007/s12205-015-0767-6
    [14]
    李春红, 孔纲强, 张鑫蕊, 等. 温控桩-土接触面三轴试验系统研制与验证[J]. 岩土力学, 2019, 40(12): 4955–4962. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912046.htm

    LI Chun-hong, KONG Gang-qiang, ZHANG Xin-rui, et al. Development and verification of temperature-controlled pile-soil interface triaxial shear test system[J]. Rock and Soil Mechanics, 2019, 40(12): 4955–4962. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201912046.htm
    [15]
    KUO M, BOLTON M. Shear tests on deep-ocean clay crust from the Gulf of Guinea[J]. Géotechnique, 2014, 64(4): 249–257. doi: 10.1680/geot.13.P.020
    [16]
    KUO M, BOLTON M. The nature and origin of deep ocean clay crust from the Gulf of Guinea[J]. Géotechnique, 2013, 63(6): 500–509. doi: 10.1680/geot.10.P.012
    [17]
    曹洋, 周建, 严佳佳. 考虑循环应力比和频率影响的动荷载下软土微观结构研究[J]. 岩土力学, 2014, 35(3): 735–743. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403021.htm

    CAO Yang, ZHOU Jian, YAN Jia-jia. Study of microstructures of soft clay under dynamic loading considering effect of cyclic stress ratio and frequency[J]. Rock and Soil Mechanics, 2014, 35(3): 735–743. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201403021.htm
    [18]
    CHEN Y M, JI M X, HUANG B. Effect of cyclic loading frequency on undrained behaviors of undisturbed marine clay[J]. China Ocean Engineering, 2004, 18(4): 643–651.
    [19]
    任玉宾, 朱兴运, 周令新, 等. 南海西部海盆深海沉积物物理性质初探[J]. 中国海洋大学学报(自然科学版), 2017, 47(10): 14–20. https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710004.htm

    REN Yu-bin, ZHU Xing-yun, ZHOU Ling-xin, et al. Preliminary study on physical properties of deep-sea sediments in the western basin of South China sea[J]. Periodical of Ocean University of China, 2017, 47(10): 14–20. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-QDHY201710004.htm
    [20]
    土工试验规程: SL237—1999[S]. 1999.

    Specification of Soil Test: SL237-1999[S]. Beijing: China Water Power Press, 1999. (in Chinese)
    [21]
    黄博, 汪清静, 凌道盛, 等. 饱和砂土三轴试验中反压设置与抗剪强度的研究[J]. 岩土工程学报, 2012, 34(7): 1313–1319. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207021.htm

    HUANG Bo, WANG Qing-jing, LING Dao-sheng, et al. Effects of back pressure on shear strength of saturated sand in triaxial tests[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1313–1319. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207021.htm
    [22]
    EID H T, AMARASINGHE R S, RABIE K H, et al. Residual shear strength of fine-grained soils and soil–solid interfaces at low effective normal stresses[J]. Canadian Geotechnical Journal, 2015, 52(2): 198–210.
    [23]
    EID H T. Undrained interface shear strength of fine-grained soils for near-shore marine pipelines[J]. Geotechnical Testing Journal, 2020, 43(2): 495–516.
    [24]
    TAHA A, FALL M. Shear behavior of sensitive marine clay-steel interfaces[J]. Acta Geotechnica, 2014, 9(6): 969–980.
    [25]
    汪优, 任加琳, 李赛, 等. 土-结构接触面剪切全过程本构关系研究[J]. 湖南大学学报(自然科学版), 2021, 48(3): 144–152. https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202103015.htm

    WANG You, REN Jia-lin, LI Sai, et al. Study on shear constitutive relation of soil-structure interface in whole process[J]. Journal of Hunan University (Natural Sciences), 2021, 48(3): 144–152. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-HNDX202103015.htm
  • Cited by

    Periodical cited type(1)

    1. 杨昊,杜强. 标准砂-钢板接触面剪切失效机理的宏细观研究. 科学技术与工程. 2023(34): 14691-14699 .

    Other cited types(0)

Catalog

    Article views (227) PDF downloads (160) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return