Citation: | JING Li-ping, WANG Gang, LI Jia-rui, SUN Yun-lun, ZHOU Zhong-yi, QI Wen-hao. Shaking table tests and numerical simulations of dynamic interaction of soil-pile-nuclear island system[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 163-172. DOI: 10.11779/CJGE202201016 |
[1] |
赵晓光, 高文生. 地震作用下高承台群桩基础振动台试验研究[J]. 建筑结构, 2019, 49(17): 120–129. https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201917030.htm
ZHAO Xiao-guang, GAO Wen-sheng. Experimental study on seismic response of pile group foundation with high-cap by shaking table[J]. Building Structure, 2019, 49(17): 120–129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JCJG201917030.htm
|
[2] |
谢文, 孙利民. 桩–土–斜拉桥动力相互作用体系振动反应特性试验研究[J]. 岩土工程学报, 2019, 41(7): 1319–1328. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907019.htm
XIE Wen, SUN Li-min. Experimental studies on seismic response characteristics of dynamic interaction system of pile-soil-cable-stayed bridges[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1319–1328. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907019.htm
|
[3] |
许成顺, 豆鹏飞, 杜修力, 等. 非液化土-群桩基础-结构体系相互作用动力响应振动台试验研究[J/OL]. 建筑结构学报: 1-11[2020-10-16].
XU Cheng-shun, DOU Peng-fei, DU Xiu-li, et al. Shaking table test study on dynamic response of non liquefiable soil pile group foundation structure system [J/OL]. Journal of Building Structure: 1-11 [2020-10-16]. (in Chinese)
|
[4] |
陈跃庆, 吕西林, 李培振, 等. 不同土性的地基-结构动力相互作用振动台模型试验对比研究[J]. 土木工程学报, 2006, 39(5): 57–64. doi: 10.3321/j.issn:1000-131X.2006.05.009
CHEN Yue-qing, LÜ Xi-lin, LI Pei-zhen, et al. Comparative study on the dynamic soil-structure interaction system with various soils by using shaking table model tests[J]. China Civil Engineering Journal, 2006, 39(5): 57–64. (in Chinese) doi: 10.3321/j.issn:1000-131X.2006.05.009
|
[5] |
CHANG B J, HUTCHINSON T C. Experimental investigation of plastic demands in piles embedded in multi-layered liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 146–156. doi: 10.1016/j.soildyn.2013.01.012
|
[6] |
CHANG B J, HUTCHINSON T C. Tracking the dynamic characteristics of a nonlinear soil-pile system in multi-layered liquefiable soils[J]. Soil Dynamics and Earthquake Engineering, 2013, 49: 89–95. doi: 10.1016/j.soildyn.2013.01.007
|
[7] |
HAERI S M, KAVAND A, RAHMANI I, et al. Response of a group of piles to liquefaction-induced lateral spreading by large scale shake table testing[J]. Soil Dynamics and Earthquake Engineering, 2012, 38: 25–45. doi: 10.1016/j.soildyn.2012.02.002
|
[8] |
KOBAYASHI K, YAO S, YOSHIDA N. Dynamic compliance of pile group considering nonlinear behavior around piles[C]// Proceedings of 2nd International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics. Missouri, 1991: 785–792.
|
[9] |
ÁLAMO G M, PADRÓN L A, AZNÁREZ J J, et al. Structure-soil-structure interaction effects on the dynamic response of piled structures under obliquely incident seismic shear waves[J]. Soil Dynamics and Earthquake Engineering, 2015, 78: 142–153. doi: 10.1016/j.soildyn.2015.07.013
|
[10] |
HUSSIEN M N, KARRAY M, TOBITA T, et al. Kinematic and inertial forces in pile foundations under seismic loading[J]. Computers and Geotechnics, 2015, 69: 166–181. doi: 10.1016/j.compgeo.2015.05.011
|
[11] |
孙海峰, 景立平, 孟宪春, 等. 振动台试验三维叠层剪切箱研制[J]. 振动与冲击, 2012, 31(17): 26–32. doi: 10.3969/j.issn.1000-3835.2012.17.005
SUN Hai-feng, JING Li-ping, MENG Xian-chun, et al. A three-dimensional laminar shear soil container for shaking table test[J]. Journal of Vibration and Shock, 2012, 31(17): 26–32. (in Chinese) doi: 10.3969/j.issn.1000-3835.2012.17.005
|
[12] |
安军海, 陶连金. 振动台试验新型叠层剪切模型箱的设计与性能测试[J]. 振动与冲击, 2020, 39(5): 201–207. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202121012.htm
AN Jun-hai, TAO Lian-jin. Shaking table tests for design and performance of a new type laminar shear model box[J]. Journal of Vibration and Shock, 2020, 39(5): 201–207. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ202121012.htm
|
[13] |
尚守平, 卢华喜, 王海东, 等. 大比例模型结构-桩-土动力相互作用试验研究与理论分析[J]. 工程力学, 2006, 23(增刊2): 155–166. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2006S2016.htm
SHANG Shou-ping, LU Hua-xi, WANG Hai-dong, et al. Experimental research and theoretical analysis of large-scale model structure-pile-soil dynamic-interaction[J]. Engineering Mechanics, 2006, 23(S2): 155–166. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX2006S2016.htm
|
[14] |
MEDINA C, AZNÁREZ J J, PADRÓN L A, et al. Effects of soil-structure interaction on the dynamic properties and seismic response of piled structures[J]. Soil Dynamics and Earthquake Engineering, 2013, 53: 160–175. doi: 10.1016/j.soildyn.2013.07.004
|
[15] |
KAMPITSIS A E, GIANNAKOS S, GEROLYMOS N, et al. Soil-pile interaction considering structural yielding: Numerical modeling and experimental validation[J]. Engineering Structures, 2015, 99: 319–333. doi: 10.1016/j.engstruct.2015.05.004
|
[16] |
李嘉瑞, 景立平, 董瑞, 等. ABAQUS模拟土-结构相互作用时人工边界的选取[J]. 地震工程与工程振动, 2020, 40(3): 174–182. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202003018.htm
LI Jia-rui, JING Li-ping, DONG Rui, et al. Artificial boundary selection when calculating soil-structure interaction with Abaqus[J]. Earthquake Engineering and Engineering Dynamics, 2020, 40(3): 174–182. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC202003018.htm
|
1. |
夏士伟,陈浩,柏明鑫. 制样方法对软土力学特性影响的试验研究. 粉煤灰综合利用. 2023(02): 68-75 .
![]() | |
2. |
李宏儒,梁恒楠. 不同胶结剂人工结构性黄土的力学特性差异研究. 岩土力学. 2023(05): 1416-1424 .
![]() |