• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
HOU Zhen-kun, TANG Meng-xiong, HU He-song, LIU Chun-lin, SU Ding-li. Physical model tests on bearing performance drilling with pre-stressed concrete pipe cased pile considering hole collapse[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 153-162. DOI: 10.11779/CJGE202201015
Citation: HOU Zhen-kun, TANG Meng-xiong, HU He-song, LIU Chun-lin, SU Ding-li. Physical model tests on bearing performance drilling with pre-stressed concrete pipe cased pile considering hole collapse[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 153-162. DOI: 10.11779/CJGE202201015

Physical model tests on bearing performance drilling with pre-stressed concrete pipe cased pile considering hole collapse

More Information
  • Received Date: January 05, 2021
  • Available Online: September 22, 2022
  • The drilling with pre-stressed concrete pipe cased pile (Referred to as DPC pile) is a typical non-squeezing soil PHC pipe pile foundation. During the process of its hole drilling, soil dumping and pile sinking, the hole collapse around its pile shaft will affect the flow path and effects of the grouting in the clearance between the DPC pile wall and hole wall, and ultimately affect its skin friction. The physical model and static load tests on the DPC piles are carried out. The load-carrying properties, load transfer characteristics and skin friction distribution characteristics of the DPC piles are analyzed. Three-dimensional geometric size and spatial point information of grouting body for the DPC piles are quantitatively characterized. The essential reason for the skin friction of the DPC piles due to hole collapse is revealed. The following conclusions are drawn: (1) The load-displacement curves of DPC piles are all steep drop types under the conditions of no rock-socketed pile end. The DPC piles are a kind of friction end-bearing ones. (2) After grouting, the collapsed hole is filled with grouting to increase the friction resistance, and the bypass of the slurry in the falling sand area causes the friction resistance to drop. (3) The existence of hole collapse affects the flow law of the groutting in the pile-soil gap, and changes the area and thickness of the pile body covered by the grouting body, which is an important reason for affecting the skin friction. The area and thickness of the grouting body covering the DPC piles are the important factors that affect the skin friction. The skin friction of the DPC piles has a good cubic function relationship with the grouting volume.
  • [1]
    邢皓枫, 李浩铭, 安新, 等. 超大直径嵌岩桩受力特性的数值模拟及其规律性分析[J]. 岩土工程学报, 2013, 35(增刊2): 1126–1129. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2219.htm

    XING Hao-feng, LI Hao-ming, AN Xin, et al. Numerical simulation and analysis of mechanical characteristics for large-diameter rock-socketed piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1126–1129. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2219.htm
    [2]
    任青, 高战士, 吕洪勇. 层状地基中大直径端承桩的竖向振动特性研究[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4193–4202. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2100.htm

    REN Qing, GAO Zhan-shi, LÜ Hong-yong. Vertical vibration characteristics of large-diameter end- bearing pile in layered soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4193–4202. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2100.htm
    [3]
    HUANG F Y, WU S W, LUO X Y, et al. Pseudo-static low cycle test on the mechanical behavior of PHC pipe piles with consideration of soil-pile interaction[J]. Engineering Structures, 2018, 171: 992–1006. doi: 10.1016/j.engstruct.2018.01.060
    [4]
    吴建涛, 叶霄, 李国维, 等. 高路堤下PHC桩加固软土地基的承载及变形特性[J]. 岩土力学, 2018, 39(增刊2): 351–358. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2048.htm

    WU Jian-tao, YE Xiao, LI Guo-wei, et al. Bearing and deformation behaviors of PHC pile-reinforced soft foundation under high embankment[J]. Rock and Soil Mechanics, 2018, 39(S2): 351–358. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2018S2048.htm
    [5]
    王奎华, 肖偲, 吴君涛, 等. 饱和土中大直径缺陷桩振动特性研究[J]. 岩石力学与工程学报, 2018, 37(7): 1722–1730. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807016.htm

    WANG Kui-hua, XIAO Si, WU Jun-tao, et al. Dynamic characteristics of defective large diameter piles in saturated soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7): 1722–1730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201807016.htm
    [6]
    范小雪, 李原, 吴文兵, 等. 饱和土中大直径缺陷桩水平振动响应研究[J]. 岩石力学与工程学报, 2020, 39(2): 413–423. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002019.htm

    FAN Xiao-xue, LI Yuan, WU Wen-bing, et al. Horizontal vibration response of defective large-diameter piles embedded in saturated soils[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(2): 413–423. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202002019.htm
    [7]
    薛力梨, 蒋元海, 杨琳, 等. PHC管桩蒸压养护混凝土的力学性能与界面亚微观结构[J]. 硅酸盐通报, 2015, 34(9): 2662–2667. https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201509054.htm

    XUE Li-li, JIANG Yuan-hai, YANG Lin, et al. Mechanical property and interface microstructure of autoclaved curing concrete of PHC pile[J]. Bulletin of the Chinese Ceramic Society, 2015, 34(9): 2662–2667. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GSYT201509054.htm
    [8]
    马加骁, 张明义, 王永洪. 预应力高强度混凝土管桩桩身受力特性测试技术研究进展[J]. 工程地质学报, 2020, 28(4): 896–906. https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004023.htm

    MA Jia-xiao, ZHANG Ming-yi, WANG Yong-hong. Current status and prospects of test techniques for prestressed high strength concrete pipe pile[J]. Journal of Engineering Geology, 2020, 28(4): 896–906. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCDZ202004023.htm
    [9]
    唐孟雄, 戚玉亮, 周治国, 等. 空心与填芯PHC管桩抗弯试验及其理论计算研究[J]. 岩土工程学报, 2013, 35(增刊2): 1075–1080. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2208.htm

    TANG Meng-xiong, QI Yu-liang, ZHOU Zhi-guo, et al. Comparative study on bending performance between hollow PHC pipe piles and PHC pipe piles with concrete core[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1075–1080. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2208.htm
    [10]
    胡贺松, 陈晓斌, 唐孟雄, 等. 随钻跟管桩桩-土接触面作用机制大型直剪试验研究[J]. 岩土力学, 2018, 39(12): 4325–4334. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812005.htm

    HU He-song, CHEN Xiao-bin, TANG Meng-xiong, et al. Investigation on shearing failure mechanism for DPC pile-soil interface in large-scale direct shear tests[J]. Rock and Soil Mechanics, 2018, 39(12): 4325–4334. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201812005.htm
    [11]
    吴锋, 汪冬冬, 时蓓玲, 等. 后张法预应力混凝土大直径管桩耐久性与寿命预测研究[J]. 土木工程学报, 2016, 49(3): 122–128. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603014.htm

    WU Feng, WANG Dong-dong, SHI Bei-ling, et al. Research on durability and life prediction for raymond cylinder pile[J]. China Civil Engineering Journal, 2016, 49(3): 122–128. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201603014.htm
    [12]
    吴声扬. 填芯大直径随钻跟管桩竖向抗压承载性能试验及数值分析研究[D]. 广州: 广州大学, 2019.

    WU Sheng-yang. Experimental Study and Numerical Analysis of Vertical Compression Bearing Capacity of Filling Core Drilling With Large Diameter PHC Pipe Cased Pile[D]. Guangzhou: Guangzhou University, 2019. (in Chinese)
    [13]
    周佳锦, 龚晓南, 王奎华, 等. 静钻根植竹节桩在软土地基中的应用及其承载力计算[J]. 岩石力学与工程学报, 2014, 33(增刊2): 4359–4366. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2122.htm

    ZHOU Jia-jin, GONG Xiao-nan, WANG Kui-hua, et al. Application of static drill rooted precast nodular pile in soft soil foundation and calculation for bearing capacity[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(S2): 4359–4366. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2014S2122.htm
    [14]
    张日红, 吴磊磊, 孔清华. 静钻根植桩基础研究与实践[J]. 岩土工程学报, 2013, 35(增刊2): 1200–1203. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2237.htm

    ZHANG Ri-hong, WU Lei-lei, KONG Qing-hua. Research and practice of JZGZ pile foundation[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S2): 1200–1203. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S2237.htm
    [15]
    周佳锦. 静钻根植竹节桩承载及沉降性能试验研究与有限元模拟[D]. 杭州: 浙江大学, 2016.

    ZHOU Jia-jin. Test and Modeling on Behavior of the Pre-Bored Grouting Planted Nodular Pile[D]. Hangzhou: Zhejiang University, 2016. (in Chinese)
    [16]
    李志刚, 张雁, 朱合华, 等. 软土地区大直径中掘扩底法管桩承载性能现场试验分析[J]. 土木工程学报, 2016, 49(9): 78–86. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201609009.htm

    LI Zhi-gang, ZHANG Yan, ZHU He-hua, et al. Experimental study on load-bearing behavior of large-diameter belled PHC pipe pile by NAKS- construction- method in soft soil area[J]. China Civil Engineering Journal, 2016, 49(9): 78–86. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201609009.htm
    [17]
    赵程, 杜兴华, 赵春风, 等. 中掘预应力管桩竖向抗压承载性能试验研究[J]. 岩土工程学报, 2013, 35(增刊1): 393–398. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1067.htm

    ZHAO Cheng, DU Xing-hua, ZHAO Chun-feng, et al. Vertical bearing capacity of inner-digging prestressed piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(S1): 393–398. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2013S1067.htm
    [18]
    赵春风, 杜兴华, 赵程, 等. 中掘预应力管桩挤土效应试验研究[J]. 岩土工程学报, 2013, 35(3): 415–421. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303004.htm

    ZHAO Chun-feng, DU Xing-hua, ZHAO Cheng, et al. Squeezing effect of inner-digging prestressed piles[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(3): 415–421. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201303004.htm
    [19]
    唐孟雄, 胡贺松, 刘春林, 等. 砂土中不同管桩桩型承载性能的对比试验研究[J]. 岩土力学, 2020, 41(增刊2): 229–237.

    TANG Meng-xiong, HU He-song, LIU Chun-lin, et al. Comparative experiments on bearing behavior of different types of pipe piles in sand[J]. Rock and Soil Mechanics, 2020, 41(S2): 229–237. (in Chinese)
    [20]
    刘春林, 唐孟雄, 胡贺松, 等. 考虑桩底沉渣的随钻跟管桩竖向承载特性模型试验研究[J]. 岩土力学, 2021, 42(1): 177–186. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101020.htm

    LIU Chun-lin, TANG Meng-xiong, HU He-song, et al. An experimental study of vertical bearing capacity of DPC piles considering sediment effect at pile bottom[J]. Rock and Soil Mechanics, 2021, 42(1): 177–186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101020.htm
    [21]
    TANG M X, HU H S, CUI J, et al. The vertical bearing mechanism of hybrid bored pre-stressed concrete cased piles[J]. International Journal of Civil Engineering, 2020, 18(3): 293–302. doi: 10.1007/s40999-019-00466-7
    [22]
    杨晓松. 大直径随钻跟管桩竖向抗压承载性能及抗震性能的试验研究[D]. 广州: 广州大学, 2018.

    YANG Xiao-song. Experimental Study on Vertical Compressive Bearing Capacity and Seismic Performance of Drilling with Large Diameter PHC Pipe Cased Pile[D]. Guangzhou: Guangzhou University, 2018. (in Chinese)
    [23]
    建筑基桩检测技术规: JGJ 106—2014[S]. 2014.

    Technical Code for Testing of Building Foundation Piles: JGJ 106—2014[S]. 2014. (in Chinese)
    [24]
    闫楠, 白晓宇, 水伟厚, 等. 大直径超长冲孔灌注桩竖向抗压承载特性原位测试研究[J]. 中南大学学报(自然科学版), 2015, 46(7): 2571–2580. https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201507026.htm

    YAN Nan, BAI Xiao-yu, SHUI Wei-hou, et al. In-situ test study on vertical compressive bearing capacity characteristic of large diameter super-long impact-cone concrete pile[J]. Journal of Central South University (Science and Technology), 2015, 46(7): 2571–2580. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZNGD201507026.htm
    [25]
    侯振坤, 唐孟雄, 胡贺松, 等. 随钻跟管桩竖向承载性能原位试验与室内物理模拟试验对比研究[J]. 岩土力学, 2021, 42(2): 419–429. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102014.htm

    HOU Zhen-kun, TANG Meng-xiong, HU He-song, et al. Comparative study on the vertical load-bearing capacity of the drilling with pre-stressed concrete pipe cased pile based on in situ and physical simulation tests[J]. Rock and Soil Mechanics, 2021, 42(2): 419–429. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102014.htm
  • Cited by

    Periodical cited type(8)

    1. 伊正男,张树光,漆文浩,范明卓,孙晔. 酸性溶液侵蚀红层软岩流固耦合蠕变特性分析. 矿业研究与开发. 2025(02): 171-183 .
    2. 梁艳玲,霍润科,宋战平,穆彦虎,秋添,宋子羿. 基于矿物溶解理论的砂岩化学损伤动态模型. 材料导报. 2024(08): 163-169 .
    3. 孟津竹,陈四利,王军祥,张靖宇. 碳酸盐岩溶蚀效应及力学特性. 沈阳工业大学学报. 2024(03): 353-360 .
    4. CHEN Bowen,LI Qi,TAN Yongsheng,Ishrat Hameed ALVI. Dissolution and Deformation Characteristics of Limestones Containing Different Calcite and Dolomite Content Induced by CO_2-Water-Rock Interaction. Acta Geologica Sinica(English Edition). 2023(03): 956-971 .
    5. 张研,王峻峰,付闵洁,叶玉龙. 酸性干湿循环灰岩单轴压缩细观劣化三维离散元分析. 金属矿山. 2023(12): 42-49 .
    6. 田洪义,王华,司景钊. 酸性溶液对花岗岩力学特性及微观结构的影响. 隧道建设(中英文). 2022(01): 57-65 .
    7. 陈传平. 灰岩三轴循环力学特性及能量演化特征试验研究. 石家庄铁道大学学报(自然科学版). 2022(02): 67-73 .
    8. 胡维. 酸性环境下灰岩水岩作用阶段判定及依据. 山西建筑. 2022(23): 72-75 .

    Other cited types(19)

Catalog

    Article views (229) PDF downloads (172) Cited by(27)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return