• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Kai-yu, LIU Feng, XIA Kai-wen. Numerical study on dynamic crack propagation of brittle materials by discontinuous deformation analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 125-133. DOI: 10.11779/CJGE202201012
Citation: ZHANG Kai-yu, LIU Feng, XIA Kai-wen. Numerical study on dynamic crack propagation of brittle materials by discontinuous deformation analysis[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 125-133. DOI: 10.11779/CJGE202201012

Numerical study on dynamic crack propagation of brittle materials by discontinuous deformation analysis

More Information
  • Received Date: April 18, 2021
  • Available Online: September 22, 2022
  • The discontinuous deformation analysis (DDA), as an implicit discrete element method, can simulate the evolution process from continuum to failure by introducing the virtual joint technology. In this study, the DDA method is modified and applied to the dynamic crack propagation problem of brittle materials. Firstly, the DDA with Voronoi discretization is adopted. Since there are many short edges in the Voronoi discretization, these edges will fail preferentially using the original DDA algorithm. A uniform spring algorthim for the DDA is proposed to solve this issue. Then, a parameter calibration scheme is presented. The uniaxial compression and a semi-circular bend (SCB) with a pre-existing crack are used to calibrate the elastic parameters and the strength parameters, respectively. Based on the calibrated parameters, the predicted crack propagation paths of SCB are highly consistent with the test results. Finally, several dynamic crack propagation problems for brittle materials, such as self-similar crack propagation, crack branching and compact tensile tests, are simulated based on the calibrated parameters. The proposed DDA method can reproduce the phenomenon of crack propagation with the constant speed for the self-similar crack and the crack branching phenomenon under dynamic loading. Meanwhile, different failure patterns for compact tensile tests under different loading speeds are reproduced successfully. The results verify the feasibility of the DDA for dynamic crack propagation of brittle materials, and pave the way for future engineering applications.
  • [1]
    BELYTSCHKO T, CHEN H, XU J X, et al. Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment[J]. International Journal for Numerical Methods in Engineering, 2003, 58(12): 1873–1905. doi: 10.1002/nme.941
    [2]
    XU X P, NEEDLEMAN A. Numerical simulations of fast crack growth in brittle solids[J]. Journal of the Mechanics and Physics of Solids, 1994, 42(9): 1397–1434. doi: 10.1016/0022-5096(94)90003-5
    [3]
    梁正召, 李连崇, 唐世斌, 等. 岩石三维表面裂纹扩展机理数值模拟研究[J]. 岩土工程学报, 2011, 33(10): 1615–1622. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110026.htm

    LIANG Zheng-zhao, LI Lian-chong, TANG Shi-bin, et al. 3D numerical simulation of growth of surface crack of rock specimens[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(10): 1615–1622. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201110026.htm
    [4]
    马鹏飞, 李树忱, 袁超, 等. 基于SED准则的近场动力学及岩石类材料裂纹扩展模拟[J]. 岩土工程学报, 2021, 43(6): 1109–1117. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106019.htm

    MA Peng-fei, LI Shu-chen, YUAN Chao, et al. Simulations of crack propagation in rock-like materials by peridynamics based on SED criterion[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(6): 1109–1117. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202106019.htm
    [5]
    CUNDALL P A, HART R D. Numerical modelling of discontinua[J]. Engineering Computations, 1992, 9(2): 101–113. doi: 10.1108/eb023851
    [6]
    CUNDALL P A, STRACK O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 1979, 29(1): 47–65. doi: 10.1680/geot.1979.29.1.47
    [7]
    KOU M M, LIAN Y J, WANG Y T. Numerical investigations on crack propagation and crack branching in brittle solids under dynamic loading using bond-particle model[J]. Engineering Fracture Mechanics, 2019, 212: 41–56. doi: 10.1016/j.engfracmech.2019.03.012
    [8]
    ZHAO G F, XIA K W. A study of mode-I self-similar dynamic crack propagation using a lattice spring model[J]. Computers and Geotechnics, 2018, 96: 215–225. doi: 10.1016/j.compgeo.2017.11.001
    [9]
    SHI G H. Manifold Method of Material Analysis[M]. Minneaplolis: Minesota, 1992: 57–76.
    [10]
    徐栋栋, 郑宏, 夏开文, 等. 高阶扩展数值流形法在裂纹扩展中的应用[J]. 岩石力学与工程学报, 2014, 33(7): 1375–1387. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407009.htm

    XU Dong-dong, ZHENG Hong, XIA Kai-wen, et al. Application of higher-order enriched numerical manifold method to crack propagation[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(7): 1375–1387. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201407009.htm
    [11]
    SHI G H, GOODMAN R E. Discontinuous deformation analysis. a new method for computing stress, strain and sliding of block systems[J]. Internal Medicine Journal, 1988, 44(3): 309–311.
    [12]
    王士民, 朱合华, 蔡永昌. 非连续子母块体理论模型研究(Ⅰ): 基本理论[J]. 岩土力学, 2010, 31(7): 2088–2094. doi: 10.3969/j.issn.1000-7598.2010.07.012

    WANG Shi-min, ZHU He-hua, CAI Yong-chang. A discontinuous sub-block model (Ⅰ): fundamentals[J]. Rock and Soil Mechanics, 2010, 31(7): 2088–2094. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.07.012
    [13]
    王士民, 朱合华, 蔡永昌. 非连续子母块体理论模型研究(Ⅱ): 实例分析[J]. 岩土力学, 2010, 31(8): 2383–2388. doi: 10.3969/j.issn.1000-7598.2010.08.006

    WANG Shi-min, ZHU He-hua, CAI Yong-chang. A discontinuous sub-block model(Ⅱ): case analysis[J]. Rock and Soil Mechanics, 2010, 31(8): 2383–2388. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.08.006
    [14]
    NING Y J, YANG J, AN X M, et al. Modelling rock fracturing and blast-induced rock mass failure via advanced discretisation within the discontinuous deformation analysis framework[J]. Computers and Geotechnics, 2011, 38(1): 40–49. doi: 10.1016/j.compgeo.2010.09.003
    [15]
    NING Y J, ZHAO Z Y, SUN J P, et al. Using the discontinuous deformation analysis to model wave propagations in jointed rock masses[J]. CMES-Computer Modeling in Engineering and Sciences, 2012, 89(3): 221–262.
    [16]
    焦玉勇, 张秀丽, 刘泉声, 等. 用非连续变形分析方法模拟岩石裂纹扩展[J]. 岩石力学与工程学报, 2007, 26(4): 682–691. doi: 10.3321/j.issn:1000-6915.2007.04.004

    JIAO Yu-yong, ZHANG Xiu-li, LIU Quan-sheng, et al. Simulation of rock crack propagation using discontinuous deformation analysis method[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(4): 682–691. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.04.004
    [17]
    JIAO Y Y, ZHANG X L, ZHAO J. Two-dimensional DDA contact constitutive model for simulating rock fragmentation[J]. Journal of Engineering Mechanics, 2012, 138(2): 199–209. doi: 10.1061/(ASCE)EM.1943-7889.0000319
    [18]
    徐栋栋, 邬爱清, 李聪, 等. 破裂全过程模拟的改进非连续变形分析方法[J]. 岩土力学, 2019, 40(3): 1169–1178. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903038.htm

    XU Dong-dong, WU Ai-qing, LI Cong, et al. An improved discontinuous deformation analysis method for simulation of whole fracturing process[J]. Rock and Soil Mechanics, 2019, 40(3): 1169–1178. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903038.htm
    [19]
    XIA M Y, CHEN G Q, YU P C, et al. Improvement of DDA with a new unified tensile fracture model for rock fragmentation and its application on dynamic seismic landslides[J]. Rock Mechanics and Rock Engineering, 2021, 54(3): 1055–1075. doi: 10.1007/s00603-020-02307-9
    [20]
    张开雨, 夏开文, 刘丰. 基于Voronoi多边形离散的DDA方法模拟岩石破坏[J]. 岩石力学与工程学报, 2021, 40(4): 725–738. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104007.htm

    ZHANG Kai-yu, XIA Kai-wen, LIU Feng. Simulation of rock failure by Voronoi-based discontinuous deformation analysis[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(4): 725–738. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202104007.htm
    [21]
    AYATOLLAHI M R, ALIHA M R M, HASSANI M M. Mixed mode brittle fracture in PMMA—An experimental study using SCB specimens[J]. Materials Science and Engineering: A, 2006, 417(1/2): 348–356.
    [22]
    XIA K W, CHALIVENDRA V B, ROSAKIS A J. Observing ideal "self-similar" crack growth in experiments[J]. Engineering Fracture Mechanics, 2006, 73(18): 2748–2755. doi: 10.1016/j.engfracmech.2006.05.001
    [23]
    ZHOU F H, MOLINARI J F, SHIOYA T. A rate-dependent cohesive model for simulating dynamic crack propagation in brittle materials[J]. Engineering Fracture Mechanics, 2005, 72(9): 1383–1410. doi: 10.1016/j.engfracmech.2004.10.011
    [24]
    HA Y D, BOBARU F. Characteristics of dynamic brittle fracture captured with peridynamics[J]. Engineering Fracture Mechanics, 2011, 78(6): 1156–1168. doi: 10.1016/j.engfracmech.2010.11.020
    [25]
    KOSTESKI L, BARRIOS D'AMBRA R, ITURRIOZ I. Crack propagation in elastic solids using the truss-like discrete element method[J]. International Journal of Fracture, 2012, 174(2): 139–161. doi: 10.1007/s10704-012-9684-4
    [26]
    RAMULU M, KOBAYASHI A S. Mechanics of crack curving and branching·a dynamic fracture analysis[J]. International Journal of Fracture, 1985, 27(3/4): 187–201.
    [27]
    WANG T, ZHOU M, LI Y Q, et al. Lattice spring model with angle spring and its application in fracture simulation of elastic brittle materials[J]. Theoretical and Applied Fracture Mechanics, 2020, 106: 102469. doi: 10.1016/j.tafmec.2019.102469
  • Related Articles

    [1]ZHONG Hua, ZHANG Bin, ZHANG Shou-jie, YU Ning, SU An-shuang. Structure and construction of sunken fascine mattress on ice[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(zk1): 189-194. DOI: 10.11779/CJGE2016S1036
    [2]WEN Ying-wen, HU Ming-liang, HAN Shun-you, LIU Song-yu. Application of static bolt-pile technique to construction of basement of existing buildings[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 224-229.
    [3]XU Kai-jun, YANG Hong-po, WU Zheng-guang. Application of partial top-down construction of excavations under complex environment[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(suppl): 649-653.
    [4]LUO Zhanyou, GONG Xiaonan, ZHU Xiangrong. Soil displacements around jacked group piles based on construction sequence and compacting effects[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(6): 824-829.
    [5]NAN Chen, ZHANG Mingqing. Construction technology of underground river section of Wuzhaoguan tunnel[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 948-953.
    [6]LIU Songyu, JING Fei. Settlement prediction of embankments with stage construction on soft ground[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 228-232.
    [7]ZHANG Zhiqiang, HE Chuan. Study on the mechanical behaviour of a metro tunnel construction adjacent to existing pile foundations in Shenzhen[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 204-207.
    [8]PENG Daofu, LI Zhongxian. Study on TBM boring technique for construction of super long tunnel[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2): 179-183.
    [9]LI Shiren, CHEN Dewen. Construction techniques of long bored pile embedded in rock[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 741-745.
    [10]Li Shucai, Zhu Weishen, Zhang Yujun. Research on construction sequence majorization for a group of carverns in joined rockmass[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(1): 1-4.
  • Cited by

    Periodical cited type(2)

    1. 王斌. 双桥静力触探试验在静压桩沉桩阻力估算中的应用. 林业建设. 2024(06): 66-72 .
    2. 周君栋. 混凝土板桩施工技术在京杭运河航道杭州段整治工程中的应用. 工程技术研究. 2022(01): 80-83 .

    Other cited types(3)

Catalog

    Article views (262) PDF downloads (130) Cited by(5)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return