Citation: | SHU Shi, SHI Jian-yong. Slope stability of municipal solid waste landfills under combined effects of gas pressure and temperature changes[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 82-89. DOI: 10.11779/CJGE202201007 |
[1] |
MITCHELL J K, SEED R B, SEED H B. Kettleman hills waste landfill slope failure. I: liner-system properties[J]. Journal of Geotechnical Engineering, 1990, 116(4): 647–668. doi: 10.1061/(ASCE)0733-9410(1990)116:4(647)
|
[2] |
KENTER R J, SCHMUCKER B O, MILLER K R. Day the earth didn't stand still: the Rumpke landslide[J]. Waste Age, 1997, 28 (3): 66–74.
|
[3] |
MERRY S M, FRITZ W U, BUDHU M, et al. Effect of gas on pore pressures in wet landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(5): 553–561. doi: 10.1061/(ASCE)1090-0241(2006)132:5(553)
|
[4] |
JAYAWEERA M, GUNAWARDANA B, GUNAWARDANA M, et al. Management of municipal solid waste open dumps immediately after the collapse: an integrated approach from Meethotamulla open dump, Sri Lanka[J]. Waste Management, 2019, 95: 227–240. doi: 10.1016/j.wasman.2019.06.019
|
[5] |
BONAPARTE R, BACHUS R C, GROSS B A. Geotechnical stability of waste fills: lessons learned and continuing challenges[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2020, 146(11): 05020010. doi: 10.1061/(ASCE)GT.1943-5606.0002291
|
[6] |
ZHANG Z, WANG Y, FANG Y, et al. Global study on slope instability modes based on 62 municipal solid waste landfills[J]. Waste Management & Research, 2020, 38(12): 1389–1404.
|
[7] |
詹良通, 罗小勇, 陈云敏, 等. 垃圾填埋场边坡稳定安全监测指标及警戒值[J]. 岩土工程学报, 2012, 34(7): 1305–1312. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207020.htm
ZHAN Liang-tong, LUO Xiao-yong, CHEN Yun-min, et al. Field monitoring items and warning values for slope safety of MSW landfills[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1305–1312. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201207020.htm
|
[8] |
XU Q Y, TOLAYMAT T, TOWNSEND T G. Impact of pressurized liquids addition on landfill slope stability[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2012, 138(4): 472–480. doi: 10.1061/(ASCE)GT.1943-5606.0000609
|
[9] |
REDDY K R, KULKARNI H S, KHIRE M V. Two-phase modeling of leachate recirculation using vertical wells in bioreactor landfills[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2013, 17(4): 272–284. doi: 10.1061/(ASCE)HZ.2153-5515.0000180
|
[10] |
彭赵, 兰吉武, 詹良通, 等. 塘渣反压在垃圾填埋场局部滑移治理中的应用[J]. 浙江大学学报(工学版), 2018, 52(4): 710–718. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201804014.htm
PENG Zhao, LAN Ji-wu, ZHAN Liang-tong, et al. Application of loading berm in landfill partial slip control[J]. Journal of Zhejiang University (Engineering Science), 2018, 52(4): 710–718. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDZC201804014.htm
|
[11] |
FENG S J, CHEN Z W, CHEN H X, et al. Slope stability of landfills considering leachate recirculation using vertical wells[J]. Engineering Geology, 2018, 241: 76–85. doi: 10.1016/j.enggeo.2018.05.013
|
[12] |
MA P C, KE H, LAN J W, et al. Field measurement of pore pressures and liquid-gas distribution using drilling and ERT in a high food waste content MSW landfill in Guangzhou, China[J]. Engineering Geology, 2019, 250: 21–33. doi: 10.1016/j.enggeo.2019.01.004
|
[13] |
YEŞILLER N, HANSON J L, OETTLE N K, et al. Thermal analysis of cover systems in municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2008, 134(11): 1655–1664. doi: 10.1061/(ASCE)1090-0241(2008)134:11(1655)
|
[14] |
HANSON J L, YEŞILLER N, OETTLE N K. Spatial and temporal temperature distributions in municipal solid waste landfills[J]. Journal of Environmental Engineering, 2010, 136(8): 804-814. doi: 10.1061/(ASCE)EE.1943-7870.0000202
|
[15] |
JAFARI N H, STARK T D, THALHAMER T. Progression of elevated temperatures in municipal solid waste landfills[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2017, 143(8): 05017004. doi: 10.1061/(ASCE)GT.1943-5606.0001683
|
[16] |
SHI J Y, SHU S, AI Y B, et al. Effect of elevated temperature on solid waste shear strength and landfill slope stability[J]. Waste Management & Research, 2021, 39(2): 351–359.
|
[17] |
SHI J Y, ZHANG T, ZHANG J F, et al. Prototype heat exchange and monitoring system at a municipal solid waste landfill in China[J]. Waste Management, 2018, 78: 659–668. doi: 10.1016/j.wasman.2018.06.036
|
[18] |
ZHANG T, SHI J Y, QIAN X D, et al. Temperature and gas pressure monitoring and leachate pumping tests in a newly filled MSW layer of a landfill[J]. International Journal of Environmental Research, 2019, 13(1): 1–19. doi: 10.1007/s41742-018-0157-0
|
[19] |
YU L, BATLLE F, LLORET A. A coupled model for prediction of settlement and gas flow in MSW landfills[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2010, 34(11): 1169–1190. doi: 10.1002/nag.856
|
[20] |
LIU X D, SHI J Y, QIAN X D, et al. One-dimensional model for municipal solid waste (MSW) settlement considering coupled mechanical-hydraulic-gaseous effect and concise calculation[J]. Waste Management, 2011, 31(12): 2473–2483. doi: 10.1016/j.wasman.2011.07.013
|
[21] |
LI Y C, ZHENG J, CHEN Y M, et al. One-dimensional transient analytical solution for gas pressure in municipal solid waste landfills[J]. Journal of Environmental Engineering, 2013, 139(12): 1441–1445. doi: 10.1061/(ASCE)EE.1943-7870.0000759
|
[22] |
SHI J Y, CHEN M H, QIAN X D, et al. Analytical modeling to simulate gas production for various tested landfill cells[J]. Journal of Environmental Engineering, 2016, 142(3): 04015088. doi: 10.1061/(ASCE)EE.1943-7870.0001054
|
[23] |
FENG S J, ZHENG Q T, XIE H J. A gas flow model for layered landfills with vertical extraction wells[J]. Waste Management, 2017, 66: 103–113. doi: 10.1016/j.wasman.2017.05.001
|
[24] |
SHU S, LI Y P, SUN Z M, et al. Effect of gas pressure on municipal solid waste landfill slope stability[J]. Waste Management & Research: the Journal for a Sustainable Circular Economy, 2021: 0734242X2110014.
|
[25] |
NIU J J, WANG X K, GONG S L, et al. Exact solutions for investigating thermal response of saturated soil induced by temperature change[J]. International Journal of Geomechanics, 2020, 20(10): 04020177. doi: 10.1061/(ASCE)GM.1943-5622.0001803
|
[26] |
吴珣. 城市生活垃圾填埋场中热-气-液耦合运移理论研究[D]. 南京: 河海大学, 2019.
WU Xun. Research on Heat-Gas-Liquid Coupled Behaviors of Municipal Solid Waste and Its Application[D]. Nanjing: Hohai University, 2019. (in Chinese)
|
[27] |
姜兆起. 温度影响下高塑料含量垃圾土强度变形特性试验研究[D]. 南京: 河海大学, 2018.
JIANG Zhao-qi. Experimental Study on Strength and Deformation Characteristics of Solid Waste with High Plastic Content under the Influence of Temperature[D]. Nanjing: Hohai University, 2018. (in Chinese)
|
[28] |
魏海云, 詹良通, 陈云敏. 城市生活垃圾的气体渗透性试验研究[J]. 岩石力学与工程学报, 2007, 26(7): 1408–1415. doi: 10.3321/j.issn:1000-6915.2007.07.014
WEI Hai-yun, ZHAN Liang-tong, CHEN Yun-min. Experimental study on gas permeability of municipal solid waste[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(7): 1408–1415. (in Chinese) doi: 10.3321/j.issn:1000-6915.2007.07.014
|
[29] |
施建勇, 赵义. 气体压力和孔隙对垃圾土体气体渗透系数影响的研究[J]. 岩土工程学报, 2015, 37(4): 586–593. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504003.htm
SHI Jian-yong, ZHAO Yi. Influence of air pressure and void on permeability coefficient of air in municipal solid waste (MSW) [J]. Chinese Journal of Geotechnical Engineering, 2015, 37(4): 586–593. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201504003.htm
|
[30] |
SHI J Y, WU X, AI Y B, et al. Laboratory test investigations on soil water characteristic curve and air permeability of municipal solid waste[J]. Waste Management & Research, 2018, 36(5): 463–470.
|
[31] |
TOWNSEND T G, WISE W R, JAIN P. One-dimensional gas flow model for horizontal gas collection systems at municipal solid waste landfills[J]. Journal of Environmental Engineering, 2005, 131(12): 1716–1723. doi: 10.1061/(ASCE)0733-9372(2005)131:12(1716)
|
[32] |
SHI J Y, QIAN X D, WU X, et al. Organic degradation and gas generation of MSW under controlled constant temperatures[J]. Journal of Hazardous, Toxic, and Radioactive Waste, 2018, 22(3): 04018005. doi: 10.1061/(ASCE)HZ.2153-5515.0000396
|
[33] |
马小飞. 垃圾填埋场抽气试验及填埋气收集量评估方法[D]. 杭州: 浙江大学, 2013.
MA Xiao-fei. Extraction Test and Evaluation Method of Landfill Gas for Municipal Solid Waste Landfills[D]. Hangzhou: Zhejiang University, 2013. (in Chinese)
|
[34] |
GAO W, CHEN Y M, ZHAN L T, et al. Engineering properties for high kitchen waste content municipal solid waste[J]. Journal of Rock Mechanics and Geotechnical Engineering, 2015, 7(6): 646–-658. doi: 10.1016/j.jrmge.2015.08.007
|
[35] |
金涛. 长沙市城市固体废物处理场填埋气产生与迁移模型研究[D]. 长沙: 湖南大学, 2017.
JIN Tao. Study on Landfill Gas Generation and Migration Model in Municipal Solid Waste Disposal Field in Changsha City[D]. Changsha: Hunan University, 2017. (in Chinese)
|
[36] |
刘盛涛, 郑有飞. 基于产气模型对填埋场垃圾产气速率与气压的估算[J]. 科学技术与工程, 2017, 17(26): 334–339. https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201726056.htm
LIU Sheng-tao, ZHENG You-fei. Estimation of biogas production rate and pressure in landfill based on biogas production model[J]. Science Technology and Engineering, 2017, 17(26): 334–339. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-KXJS201726056.htm
|
[37] |
ZHAN T L T, CHEN Y M, LING W A. Shear strength characterization of municipal solid waste at the Suzhou landfill, China[J]. Engineering Geology, 2008, 97: 97–111. doi: 10.1016/j.enggeo.2007.11.006
|
[38] |
钱学德, 施建勇, 刘晓东. 现代卫生填埋场的设计与施工[M]. 2版北京: 中国建筑工业出版社, 2011.
QIAN Xue-de, SHI Jian-yong, LIU Xiao-dong. Design and Construction of Modern Sanitary Landfills[M]. 2nd ed. Beijing: Chinese Architecture and Building Press, 2011. (in Chinese)
|
[39] |
SAKAKI T, LIMSUWAT A, ILLANGASEKARE T H. An improved air pressure measuring method and demonstrated application to drainage in heterogeneous soils[J]. Vadose Zone Journal, 2011, 10(2): 706–715. doi: 10.2136/vzj2010.0121
|
[40] |
ZHANG T, SHI J, QIAN X, et al. Temperature monitoring during a water-injection test using a vertical well in a newly filled MSW layer of a landfill[J]. Waste Management & Research, 2019, 37(5): 530–541.
|