• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LU Hao-jie, KONG Gang-qiang, LIU Han-long, WU Di, CHEN Yong-hui. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. DOI: 10.11779/CJGE202201004
Citation: LU Hao-jie, KONG Gang-qiang, LIU Han-long, WU Di, CHEN Yong-hui. Influences of thermo-mechanical properties of clay on mechanical responses of energy piles[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 53-61. DOI: 10.11779/CJGE202201004

Influences of thermo-mechanical properties of clay on mechanical responses of energy piles

More Information
  • Received Date: August 31, 2020
  • Available Online: September 22, 2022
  • Under the action of temperature variation induced by energy piles, the mechanical properties of soils surrounding the piles will be changed, thereby affecting their deformation, the stress of the pile-soil interface and the bearing capacity of the pile foundation. The ACMEG-T constitutive model for the thermal properties of soils is developed in ABAQUS commercial software. The accuracy of the program is verified by simulating the triaxial test results by using the UMAT subroutine. Based on the numerical simulation, the influence of thermo-mechanical properties of soils on the displacement of pile head, the stress of the pile-soil interface and the axial force of the energy piles in clay are studied. The results show that the change of soil temperature can lead to irretrievable settlement of soils, and further lead to negative skin friction on the pile shaft. The additional settlement and irreversible change of axial force of the energy piles can be induced by the negative skin friction. With the increase of the over-consolidation ratio of clay, the effects of thermo-mechanical properties of soils on the mechanical response of the energy piles decrease.
  • [1]
    BRANDL H. Energy foundations and other thermo-active ground structures[J]. Géotechnique, 2006, 56(2): 81–122. doi: 10.1680/geot.2006.56.2.81
    [2]
    刘汉龙, 孔纲强, 吴宏伟. 能量桩工程应用研究进展及PCC能量桩技术开发[J]. 岩土工程学报, 2014, 36(1): 176–181. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm

    LIU Han-long, KONG Gang-qiang, NG C. Review of the applications of energy pile and technical development of PCC energy pile[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(1): 176–181. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201401024.htm
    [3]
    桩基地热能利用技术标准: JGJ/T 438—2018[S]. 2018.

    Technical Stanard for Utlization of Geothermal Energy through Piles: JGJ/T 438—2018[S]. 2018. (in Chinese)
    [4]
    ABUEL-NAGA H M, BERGADO D T, RAMANA G V, et al. Experimental evaluation of engineering behavior of soft Bangkok clay under elevated temperature[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2006, 132(7): 902–910. doi: 10.1061/(ASCE)1090-0241(2006)132:7(902)
    [5]
    BALDI G, HUECKEL T, PEANO A. Developments in Modeling of Thermo-Hydro-Mechanical Behavior of Boom Clay and Clay-Based Buffer Materials[R]. Luxembourg: Commission of the European Communities, 1991.
    [6]
    HUECKEL T, BORSETTO M. Thermoplasticity of saturated soils and shales: constitutive equations[J]. Journal of Geotechnical Engineering, 1990, 116(12): 1765–1777. doi: 10.1061/(ASCE)0733-9410(1990)116:12(1765)
    [7]
    CUI Y J, SULTAN N, DELAGE P. A thermomechanical model for saturated clays[J]. Canadian Geotechnical Journal, 2000, 37(3): 607–620. doi: 10.1139/t99-111
    [8]
    姚仰平, 李自强, 侯伟, 等. 基于改进伏斯列夫线的超固结土本构模型[J]. 水利学报, 2008, 39(11): 1244–1250. doi: 10.3321/j.issn:0559-9350.2008.11.013

    YAO Yang-ping, LI Zi-qiang, HOU Wei, et al. Constitutive model of over-consolidated clay based on improved Hvorslev envelope[J]. Journal of Hydraulic Engineering, 2008, 39(11): 1244–1250. (in Chinese) doi: 10.3321/j.issn:0559-9350.2008.11.013
    [9]
    姚仰平, 杨一帆, 牛雷. 考虑温度影响的UH模型[J]. 中国科学(技术科学), 2011, 41(2): 158–169. https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm

    YAO Yang-ping, YANG Yi-fan, NIU Lei. UH model considering temperature effects[J]. Scientia Sinica (Technologica), 2011, 41(2): 158–169. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-JEXK201102004.htm
    [10]
    ZHOU C, NG C W W. A thermomechanical model for saturated soil at small and large strains[J]. Canadian Geotechnical Journal, 2015, 52(8): 1101–1110. doi: 10.1139/cgj-2014-0229
    [11]
    程晓辉, 陈志辉. 纯主应力旋转条件下饱和黏土累积变形的热力学模型分析[J]. 岩土工程学报, 2015, 37(9): 1581–1590. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509006.htm

    CHENG Xiao-hui, CHEN Zhi-hui. Thermodynamic modeling of accumulated deformation of saturated clays under pure principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(9): 1581–1590. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201509006.htm
    [12]
    陈志辉, 程晓辉. 饱和土体固结压缩和蠕变的热力学本构理论及模型分析[J]. 岩土工程学报, 2014, 36(3): 89–498. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403016.htm

    CHEN Zhi-hui, CHENG Xiao-hui. Thermodynamic constitutive theory and analysis of consolidation compression and creep of saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(3): 89–498. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201403016.htm
    [13]
    LALOUI L, CEKEREVAC C. Thermo-plasticity of clays: an isotropic yield mechanism[J]. Computers and Geotechnics, 2003, 30(8): 649–660. doi: 10.1016/j.compgeo.2003.09.001
    [14]
    LALOUI L, FRANÇOIS B. ACMEG-T: soil thermoplasticity model[J]. Journal of Engineering Mechanics, 2009, 135(9): 932–944. doi: 10.1061/(ASCE)EM.1943-7889.0000011
    [15]
    费康, 钱健, 洪伟, 等. 黏土地基中能量桩力学特性数值分析[J]. 岩土力学, 2018, 39(7): 2651–2661. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807040.htm

    FEI Kang, QIAN Jian, HONG Wei, et al. Numerical analysis of mechanical behavior of energy piles in clay[J]. Rock and Soil Mechanics, 2018, 39(7): 2651–2661. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201807040.htm
    [16]
    姚仰平, 冯兴, 黄祥, 等. UH模型在有限元分析中的应用[J]. 岩土力学, 2010, 31(1): 237–245. doi: 10.3969/j.issn.1000-7598.2010.01.041

    YAO Yang-ping, FENG Xing, HUANG Xiang, et al. Application of UH model to finite element analysis[J]. Rock and Soil Mechanics, 2010, 31(1): 237–245. (in Chinese) doi: 10.3969/j.issn.1000-7598.2010.01.041
    [17]
    DI DONNA A, LALOUI L. Numerical analysis of the geotechnical behaviour of energy piles[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2015, 39(8): 861–888. doi: 10.1002/nag.2341
    [18]
    HONG P Y, PEREIRA J M, TANG A M, et al. On some advanced thermo-mechanical models for saturated clays[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2013, 37(17): 2952–2971
    [19]
    CEKEREVAC C, LALOUI L. Experimental study of thermal effects on the mechanical behaviour of a clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2004, 28(3): 209–228.
    [20]
    POTTS D M, ZDRAVKOVIĆ L. Finite Element Analysis in Geotechnical Engineering: Application[M]. London: Thomas Telford, 2001.
    [21]
    LALOUI L, CEKEREVAC C. Numerical simulation of the non-isothermal mechanical behaviour of soils[J]. Computers and Geotechnics, 2008, 35(5): 729–745.
    [22]
    LALOUI L, NUTH M, VULLIET L. Experimental and numerical investigations of the behaviour of a heat exchanger pile[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(8): 763–781.
    [23]
    建筑桩基技术规范: JGJ 94—2008[S]. 2008.

    Technical Code for Building Pile Foundations: JGJ 94—2008[S]. 2008. (in Chinese)
    [24]
    LUO J, ZHANG Q, ZHAO H F, et al. Thermal and thermomechanical performance of energy piles with double U-loop and spiral loop heat exchangers[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(12): 04019109.

Catalog

    Article views (291) PDF downloads (166) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return