Loading [MathJax]/extensions/MathMenu.js
  • 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
SONG Er-xiang, FU Hao, LI Xian-jie. Mechanism and new calculation method for bearing capacity of foundations[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 37-44. DOI: 10.11779/CJGE202201002
Citation: SONG Er-xiang, FU Hao, LI Xian-jie. Mechanism and new calculation method for bearing capacity of foundations[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(1): 37-44. DOI: 10.11779/CJGE202201002

Mechanism and new calculation method for bearing capacity of foundations

More Information
  • Received Date: June 23, 2021
  • Available Online: September 22, 2022
  • The calculation of bearing capacity of foundations is a fundamental topic in soil mechanics. However, the contribution of the unit weight of the foundation soil to the bearing capacity cannot yet be satisfactorily calculated. The fundamental reason is that this part of bearing capacity is actually not independent, and consequently cannot be calculated separately. In order to study the mechanism of foundation bearing capacity and the relevant theory thoroughly, it is first revealed that the surcharge load corresponding to footing embedment and the unit weight of the foundation soil, multiplied by the soil strength parameter$\tan \varphi $, can be treated respectively as the equivalent cohesion and the rate of cohesion increase along depth. Then a new method is developed for the general failure mode of strip footing under non-eccentric vertical loads. In this new method a non-dimensional parameter is defined to well reflect the influences of the soil strength and soil weight on the bearing capacity, and based on which a unified formula for the calculation of bearing capacity is established, in which the soil strength, the embedment depth of the footing and the soil weight are all considered as closely related elements. For the bearing capacity of foundation under other more complicated conditions, such as failure in local mode, different footing shapes, inclined loads etc., the available methods of treatment can be still applied in combination with the newly developed formula. Careful comparison with the refined numerical calculations proves the reliability and high accuracy of the proposed formula, and at the same time it proves the rationality and correctness of the whole idea as well as the constructed non-dimensional parameter. Besides, comparisons are also made with the formulas by Terzaghi and Hansen to show the significant improvement of the proposed method over the formers.
  • [1]
    TERZAGHI K. Theoretical Soil Mechanics[M]. Hoboken: John Wiley and Sons, 1943.
    [2]
    LI Guang-xin, ZHANG Bing-yin, YU Yu-zhen. Soil Mechanics[M]. Beijing: Tsinghua University Press, 2013. (in Chinese)
    [3]
    CRAIG R F. Soil Mechanics[M]. Boston: Springer, 1983.
    [4]
    VESIĆ A S. Analysis of ultimate loads of shallow foundations[J]. Journal of the Soil Mechanics and Foundations Division, 1973, 99(1): 45–73. doi: 10.1061/JSFEAQ.0001846
    [5]
    HANSEN J B. A general formula for bearing capacity[J]. Danish Geotechnical Institute, 1961(11): 38–46.
    [6]
    VERRUIJT A. Soil Mechanics[D]. Delft: Delft University of Technology, 2012.
    [7]
    DIAZ-SEGURA E G. Assessment of the range of variation of Nγ from 60 estimation methods for footings on sand[J]. Canadian Geotechnical Journal, 2013, 50(7): 793–800. doi: 10.1139/cgj-2012-0426
    [8]
    肖大平, 朱维一, 陈环. 滑移线法求解极限承载力问题的一些进展[J]. 岩土工程学报, 1998, 20(4): 25–29. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC804.005.htm

    XIAO Da-ping, ZHU Wei-yi, CHEN Huan. Progress in slip lines method to solve the bearing capacity problem[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(4): 25–29. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC804.005.htm
    [9]
    韩冬冬, 谢新宇, 王忠瑾, 等. 条形粗糙基础极限承载力求解与误差分析[J]. 岩土工程学报, 2016, 38(10): 1789–1796. doi: 10.11779/CJGE201610007

    HAN Dong-dong, XIE Xin-yu, WANG Zhong-jin, et al. Solution and error evaluation for bearing capacity of rough strip footings[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1789–1796. (in Chinese) doi: 10.11779/CJGE201610007
    [10]
    李贤杰. 深基坑坑底抗隆起验算方法及圆形基坑分析方法研究[D]. 北京: 清华大学, 2020.

    LI Xian-jie, Calculation Method for Basal Stability of Deep Excavation and Analysis of Circular Foundation Pit[D]. Beijing: Tsinghua University, 2020. (in Chinese)
    [11]
    SONG Er-xiang, FU Hao, LI Xian-jie, A calculation method for the bearing capacity of saturated soil under undrained conditions[J]. Rock and Soil Mechanics, 2021, 42(11): 2919–2924, 2952. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202103024.htm
    [12]
    KRABBENHOFT K. OPTUM G2: Theory[M]. Copenhagen: Optum Computational Engineering, 2019.
    [13]
    宋二祥, 孔郁斐, 杨军. 土工结构安全系数定义及相应计算方法讨论[J]. 工程力学, 2016, 33(11): 1–10. https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201611001.htm

    SONG Er-xiang, KONG Yu-fei, YANG Jun. Discussion of safety factor definitions and computation methods for geotechnical structures[J]. Engineering Mechanics, 2016, 33(11): 1–10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-GCLX201611001.htm
    [14]
    SU Dong. Soil Mechanics[M]. Beijing: Tsinghua University Press, 2015. (in Chinese)
  • Related Articles

    [1]Doubts on the formula for anti overturning stability of gravity retaining walls[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240951
    [2]GAO Jiang-ping, LIU Wen-zhi, YANG Ji-qiang. Formulas for bearing capacity of soft soil foundations with hard crust based on three-shear stress unified strength theory[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(12): 2331-2337. DOI: 10.11779/CJGE201912019
    [3]ZHAO Qian-yu, SUN Rui. A shear-wave velocity discrimination formula for liquefaction applicable to Xinjiang region[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(zk2): 383-388.
    [4]QIU Yu-liang, DING Zhou-xiang. Analytical solution to Terzaghi’s consolidation model considering local source/sink term[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(7): 1299-1304.
    [5]FU Wen-guang, YANG Zhi-yin. Formulae for overall stability of composite soil nailing walls[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(4): 742-747.
    [6]TENG Kai. Evaluation and improvement of formulas for replacement depth under dynamic compaction[J]. Chinese Journal of Geotechnical Engineering, 2008, 30(7): 994-998.
    [7]WEI Xinjiang, ZHANG Shimin, WEI Wei. Discussion of formula of pullout resistance for fully grouted anchor[J]. Chinese Journal of Geotechnical Engineering, 2006, 28(7): 902-905.
    [8]M.S.Subrahmanyam, AO Pengkong. Pile length influences on piling formula[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(3): 264-267.
    [9]WANG Jianping, LI Jinglin, CAO Guoxing, JIN Weiguang. An empirical formula for bearing capacity of vibro replacement stone column[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 496-498.
    [10]Xiong Qidong, Gao Dazhao. Reliability analysis of bearing capacity of foundation determined by Hansen formula[J]. Chinese Journal of Geotechnical Engineering, 1998, 20(2): 79-81.
  • Cited by

    Periodical cited type(15)

    1. 曹善鹏,夏才初,周舒威,寇继生. 考虑寒区隧道围岩冻结温度渐变的冻胀力解析解. 同济大学学报(自然科学版). 2024(03): 360-369 .
    2. 梁沈伟,王彬,荣传新,于胜民. 卸载状态下非均质圆形寒区隧道围岩弹塑性统一解. 冰川冻土. 2024(02): 650-661 .
    3. 谭书平,卢锋. 高海拔寒区隧道衬砌背后积水冻胀分析. 公路工程. 2024(02): 46-53 .
    4. Bin Wang,ZiHao Zhang,XiuLing Liang,ChuanXin Rong,HaiBing Cai. Unified elastoplastic solution for the stress and displacement of tunnel lining and surrounding rock in cold areas considering heterogeneous characteristics. Research in Cold and Arid Regions. 2024(06): 278-291 .
    5. 张硕成,陈文化. 考虑不均匀冻胀土体-衬砌隧道在寒区的振动响应. 岩土力学. 2023(05): 1467-1476 .
    6. 高鹏,杨自友,尚阳光,张煜,蔡永彬. 基于统一强度理论的矩形巷道塑性区宽度计算. 河南城建学院学报. 2023(02): 16-23 .
    7. 陈冠任,李栋伟,陈军浩,陈涛,张潮潮,王敏,夏明海. 富水地层地铁超长联络通道冻结位移场演化规律研究. 铁道科学与工程学报. 2023(08): 3000-3013 .
    8. 杨自友,高鹏,尚阳光,张煜. 考虑冻融循环效应的非静水压寒区隧道应力场弹性分析. 隧道建设(中英文). 2023(S2): 48-58 .
    9. 张常光,高本贤,周渭,李海祥. 冻融循环和不均匀冻胀下寒区隧道的塑性解答. 力学学报. 2022(01): 252-262 .
    10. 蒋望涛,姜海强,马勤国,李永东,李治国. 考虑损伤和不均匀冻胀的寒区隧道弹塑性统一解. 华南理工大学学报(自然科学版). 2022(01): 69-79+100 .
    11. 王俊锋,寇小勇,孙健,杨愦绪,李耀文,杨文静. 采用双排桩支护结构的阴阳角型深基坑空间效应研究. 建筑结构. 2022(S1): 2483-2490 .
    12. 张金贵,程志恒,陈昊熠,殷帅峰,陈亮,薛傲. 区段煤柱留设宽度分析及优化——以崖窑峁煤矿为例. 煤炭科学技术. 2022(10): 60-67 .
    13. 亢方超,唐春安. 低温通风环境下高温隧道温度场和应力场的演化规律研究. 水利与建筑工程学报. 2021(03): 166-170+187 .
    14. 杜鹏超,彭勋,马雷,李芒原,徐洪瑞,杨愦绪. 不同参数对于深基坑双排桩支护结构的变形影响研究. 建筑结构. 2021(S1): 2038-2043 .
    15. 张常光,高本贤,李天斌,单冶鹏. 考虑位移释放的横观各向同性冻胀寒区隧道冻胀力弹塑性解答. 岩土力学. 2021(11): 2967-2976 .

    Other cited types(13)

Catalog

    Article views (446) PDF downloads (451) Cited by(28)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return