• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
YAO Yangping, ZHU Binglong, LIU lin. Differential description of basic mechanical properties of different soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 33-46. DOI: 10.11779/CJGE20220083
Citation: YAO Yangping, ZHU Binglong, LIU lin. Differential description of basic mechanical properties of different soils[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 33-46. DOI: 10.11779/CJGE20220083

Differential description of basic mechanical properties of different soils

More Information
  • Received Date: January 16, 2022
  • Available Online: February 03, 2023
  • Published Date: January 16, 2022
  • The Compressive hardening, shear dilatancy and friction are the three basic mechanical properties that affect the stress-strain relationship of soils. For different types of soils, there are similarities and differences in the three basic properties. The similarities provide the possibility to establish a unified description for the stress and strain characteristics of various soils, while the differences need to be reflected by adjusting the parameters or constructing the variables in the constitutive model. The unified hardening model (CSUH model) for clays and sands is a typical representative of the unified model. It quantitatively describes the difference in the compressive hardening of different soils by adjusting the compaction hardness parameter ps. The difference in the shear dilatancy of soils with different densities can be reflected by applying the state parameter ξ in the hardening parameter H. The difference in the strength of soils under different stress Lode angles θ is described by the transformation stress method. By comparing the measured data of several groups of clay, sand and rockfill with the predicted data of CSUH model, the results show that the CSUH model can describe the stress-strain relationship of different kinds of soils with different densities.
  • [1]
    姚仰平, 张丙印, 朱俊高. 土的基本特性、本构关系及数值模拟研究综述[J]. 土木工程学报, 2012, 45(3): 127-150. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm

    YAO Yangping, ZHANG Bingyin, ZHU Jungao. Behaviors, constitutive models and numerical simulation of soils[J]. China Civil Engineering Journal, 2012, 45(3): 127-150. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC201203020.htm
    [2]
    WANG N B, YAO Y P, CUI W J, et al. Characteristic zones for initial state of sand under undrained shearing[J]. Transportation Geotechnics, 2022, 32: 100683. doi: 10.1016/j.trgeo.2021.100683
    [3]
    ROSCOE K H, SCHOFIELD A N, THURAIRAJAH A. Yielding of clays in states wetter than critical[J]. Géotechnique, 1963, 13(3): 211-240. doi: 10.1680/geot.1963.13.3.211
    [4]
    沈珠江. 理论土力学[M]. 北京: 中国水利水电出版社, 2000.

    SHEN Zhujiang. Theoretical soil mechanics[M]. Beijing: China Water & Power Press, 2000. (in Chinese)
    [5]
    ROSCOE K, BURLAND J. On the generalized stress-strain behaviour of 'wet clay'[M]// Engineering Plasticity, Cambridge, 1968.
    [6]
    徐舜华, 徐光黎, 程瑶. 土的剑桥模型发展综述[J]. 长江科学院院报, 2007, 24(3): 27-32. doi: 10.3969/j.issn.1001-5485.2007.03.008

    XU Shunhua, XU Guangli, CHENG Yao. Review of cam-clay model for soils[J]. Journal of Yangtze River Scientific Research Institute, 2007, 24(3): 27-32. (in Chinese) doi: 10.3969/j.issn.1001-5485.2007.03.008
    [7]
    YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222. doi: 10.1016/j.compgeo.2007.04.003
    [8]
    王乃东, 姚仰平. 基于变换应力方法的各向异性模型三维化[J]. 岩土工程学报, 2011, 33(1): 50-56. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101011.htm

    WANG Naidong, YAO Yangping. Generalization of anisotropic constitutive models using transformed stress method[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(1): 50-56. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201101011.htm
    [9]
    姚仰平. UH模型系列研究[J]. 岩土工程学报, 2015, 37(2): 193-217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm

    YAO Yangping. Advanced UH models for soils[J]. Chinese Journal of Geotechnical Engineering, 2015, 37(2): 193-217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201502002.htm
    [10]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
    [11]
    YAO Y P, HOU W, ZHOU A N. UH model: three-dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [12]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
    [13]
    MUIR W D. Soil behaviour and critical state soil mechanics[M]. Cambridge: Cambridge University Press, 1990.
    [14]
    VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91. doi: 10.3208/sandf.36.2_81
    [15]
    PESTANA J M, WHITTLE A J, GENS A. Evaluation of a constitutive model for clays and sands: part II–clay behaviour[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2002, 26(11): 1123-1146. doi: 10.1002/nag.238
    [16]
    LADE P, BOPP P A. Relative density effects on drained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45(1): 1-13.
    [17]
    ROWE P W. The stress-dilatancy relation for static equilibrium of an assembly of particles in contact[J]. Proceedings of the Royal Society of London Series A Mathematical Physical Sciences, 1962, 269(1339): 500-527.
    [18]
    ROSCOE K H. Mechanical behaviour of an idealized 'wet' clay[J]. Proc 3rd Eur Conf Soil Mech Wiesbaden, 1963(1): 47-54.
    [19]
    BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
    [20]
    YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated clays[J]. Science in China Series E: Technological Sciences, 2008, 51(2): 179-191. doi: 10.1007/s11431-008-0011-2
    [21]
    YAO Y P, WANG N D. Transformed stress method for generalizing soil constitutive models[J]. Journal of Engineering Mechanics, 2014, 140(3): 614-629. doi: 10.1061/(ASCE)EM.1943-7889.0000685
    [22]
    ZHU B L, SU X X, CAO Y Q, et al. Determining parameters of the CSUH constitutive model by genetic algorithm[J]. Japanese Geotechnical Society Special Publication, 2020, 8(6): 188-193.
    [23]
    ZHU B L, CHEN Z Y. Calibrating and validating a soil constitutive model through conventional triaxial tests: an in-depth study on CSUH model[J]. Acta Geotechnica, 2022, 17(8): 3407-3420.
    [24]
    刘林. 黏土和粒状土统一的UH模型[D]. 北京: 北京航空航天大学, 2018.

    LIU Lin. UH Model for Clays and Granular Soils[D]. Beijing: Beihang University, 2018. (in Chinese)
    [25]
    翁贻令. 钙质土的抗剪强度及其影响机制研究[D]. 南宁: 广西大学, 2017.

    WENG Yiling. Research on Shear Strength and Influence Mechanism of Calcareous Soil[D]. Nanning: Guangxi University, 2017. (in Chinese)
    [26]
    SASITHARAN S, ROBERTSON P K, SEGO D C, et al. State-boundary surface for very loose sand and its practical implications[J]. Canadian Geotechnical Journal, 1994, 31(3): 321-334.
    [27]
    刘恩龙, 陈生水, 李国英, 等. 堆石料的临界状态与考虑颗粒破碎的本构模型[J]. 岩土力学, 2011, 32(S2): 148-154. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2024.htm

    LIU Enlong, CHEN Shengshui, LI Guoying, et al. Critical state of rockfill materials and a constitutive model considering grain crushing[J]. Rock and Soil Mechanics, 2011, 32(S2): 148-154. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2011S2024.htm
    [28]
    刘萌成, 高玉峰, 刘汉龙. 应力路径条件下堆石料剪切特性大型三轴试验研究[J]. 岩石力学与工程学报, 2008, 27(1): 176-186. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801025.htm

    LIU Mengcheng, GAO Yufeng, LIU Hanlong. Study on shear behaviors of rockfill in large-scale triaxial tests under different stress paths[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(1): 176-186. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200801025.htm

Catalog

    Article views (548) PDF downloads (250) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return