• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
JIANG Mingjing, LIU A'sen, LI Guangshuai. Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 618-626. DOI: 10.11779/CJGE20220081
Citation: JIANG Mingjing, LIU A'sen, LI Guangshuai. Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 618-626. DOI: 10.11779/CJGE20220081

Macro- and micro-characteristics and mechanical properties of deep-sea sediment from South China Sea

More Information
  • Received Date: January 16, 2022
  • Available Online: March 15, 2023
  • The research on deep-sea sediment is meaningful for the exploitation and utilization of resources in the South China sea. Because of the difficulties in getting the natural deep-sea sediment, there are scarce researches on it. Besides, the mechanical properties and microstructures of the deep-sea sediment are different from the ordinary soft soil due to the unique geological environment. In this study, the basic material tests, ESEM tests, oedometer tests, 1D creep tests and conventional triaxial tests are conducted to investigate the material properties, microstructures, compression and creep characteristics and shear strengths of the deep-sea sediment. As shown in the results, the deep-sea sediment is a kind of silt with a high liquid limit, high water content, low bulk density, large void ratio and high saturation. The analysis of mineral composition shows calcite and illite are abundant. The micro-pictures show a lamellar layered stacked structure with loose skeleton and large pores, which attributes to the large void ratio and high water content, and there are some biological remains. In the oedometer and 1D creep tests, the deep-sea sediment shows high compressibility and large secondary consolidation deformation. The consolidation coefficient decreases with the vertical pressure, while the secondary consolidation coefficient ascends with the vertical pressure and then decreases after reaching the peak value. In the conventional triaxial tests, the deep-sea sediment shows strain hardening. The stress path from the consolidated undrained shear tests shows both loading and unloading processes, while only the loading process is found in the consolidated drained shear tests.
  • [1]
    公衍芬, 杨文斌, 谭树东. 南海油气资源综述及开发战略设想[J]. 海洋地质与第四纪地质, 2012, 32(5): 137-147.

    GONG Yanfen, YANG Wenbin, TAN Shudong. Oil and gas resources in the South China Sea and its development strategy: a review[J]. Marine Geology & Quaternary Geology, 2012, 32(5): 137-147. (in Chinese)
    [2]
    张荷霞, 刘永学, 李满春, 等. 南海中南部海域油气资源开发战略价值评价[J]. 资源科学, 2013, 35(11): 2142-2150.

    ZHANG Hexia, LIU Yongxue, LI Manchun, et al. Strategic value assessment of oil and gas exploitation in the central and southern South China Sea[J]. Resources Science, 2013, 35(11): 2142-2150. (in Chinese)
    [3]
    杨胜雄, 梁金强, 陆敬安, 等. 南海北部神狐海域天然气水合物成藏特征及主控因素新认识[J]. 地学前缘, 2017, 24(4): 1-14.

    YANG Shengxiong, LIANG Jinqiang, LU Jing'an, et al. New understandings on the characteristics and controlling factors of gas hydrate reservoirs in the Shenhu area on the northern slope of the South China Sea[J]. Earth Science Frontiers, 2017, 24(4): 1-14. (in Chinese)
    [4]
    王友华, 王文海, 蒋兴迅. 南海深水钻井作业面临的挑战和对策[J]. 石油钻探技术, 2011, 39(2): 50-55.

    WANG Youhua, WANG Wenhai, JIANG Xingxun. South China Sea deepwater drilling challenges and solutions[J]. Petroleum Drilling Techniques, 2011, 39(2): 50-55. (in Chinese)
    [5]
    吉锋, 徐桂中, 曹玉鹏, 等. 高含水率疏浚淤泥平板贯入剪切强度试验研究[J]. 岩土工程学报, 2012, 34(9): 1753-1757. http://cge.nhri.cn/cn/article/id/14707

    JI Feng, XU Guizhong, CAO Yupeng, et al. Plate penetration tests on undrained strength behavior of dredged clay[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(9): 1753-1757. (in Chinese) http://cge.nhri.cn/cn/article/id/14707
    [6]
    雷华阳, 肖树芳. 天津软土的次固结变形特性研究[J]. 工程地质学报, 2002, 10(4): 385-389.

    LEI Huayang, XIAO Shufang. Study on secondary-consolidation deformation characteristics of soft soil in Tianjin[J]. Journal of Engineering Geology, 2002, 10(4): 385-389. (in Chinese)
    [7]
    张惠明, 徐玉胜, 曾巧玲. 深圳软土变形特性与工后沉降[J]. 岩土工程学报, 2002, 24(4): 509-514. http://cge.nhri.cn/cn/article/id/11015

    ZHANG Huiming, XU Yusheng, ZENG Qiaoling. Deformation behavior of Shenzhen soft clay and post-construction settlement[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(4): 509-514. (in Chinese) http://cge.nhri.cn/cn/article/id/11015
    [8]
    余湘娟, 殷宗泽, 董卫军. 荷载对软土次固结影响的试验研究[J]. 岩土工程学报, 2007, 29(6): 913-916. http://cge.nhri.cn/cn/article/id/12526

    YU Xiangjuan, YIN Zongze, DONG Weijun. Influence of load on secondary consolidation deformation of soft soils[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(6): 913-916. (in Chinese) http://cge.nhri.cn/cn/article/id/12526
    [9]
    陈晓平, 曾玲玲, 吕晶, 等. 结构性软土力学特性试验研究[J]. 岩土力学, 2008, 29(12): 3223-3228.

    CHEN Xiaoping, ZENG Lingling, LÜ Jing, et al. Expeimental study of mechanical behavior of structured clay[J]. Rock and Soil Mechanics, 2008, 29(12): 3223-3228. (in Chinese)
    [10]
    刘用海, 李水明, 俞伯华. 宁波软土次固结特性试验研究[J]. 土工基础, 2009, 23(3): 77-79, 95.

    LIU Yonghai, LI Shuiming, YU Bohua. Experimental study on secondary consolidation characteristics of Soft Clay in Ningbo[J]. Soil Engineering and Foundation, 2009, 23(3): 77-79, 95. (in Chinese)
    [11]
    张志敏, 王常明, 张兆楠. 天津淤泥质粉质黏土一维固结蠕变特性[J]. 中国水运(下半月), 2014, 14(6): 216-217, 303.

    ZHANG Zhimin, WANG Changming, ZHANG Zhaonan. One-dimensional consolidation creep characteristics of muddy silty clay in Tianjin[J]. China Water Transport, 2014, 14(6): 216-217, 303. (in Chinese)
    [12]
    刘伽, 罗滔, 刘洋, 等. 海相沉积土一维蠕变试验与经验模型研究[J]. 武汉大学学报(工学版), 2019, 52(8): 703-709, 715.

    LIU Jia, LUO Tao, LIU Yang, et al. Study of one-dimensional creep test and empirical model of marine deposit soils[J]. Engineering Journal of Wuhan University, 2019, 52(8): 703-709, 715. (in Chinese)
    [13]
    陈晓平, 朱鸿鹄, 张芳枝, 等. 软土变形时效特性的试验研究[J]. 岩石力学与工程学报, 2005, 24(12): 2142-2148.

    CHEN Xiaoping, ZHU Honghu, ZHANG Fangzhi, et al. Experimental study on time-dependent deformation of soft soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(12): 2142-2148. (in Chinese)
    [14]
    孔令伟, 吕海波, 汪稔, 等. 海口某海域软土工程特性的微观机制浅析[J]. 岩土力学, 2002, 23(1): 36-40.

    KONG Lingwei, LÜ Haibo, WANG Ren, et al. Preliminary analysis of micro-mechanism of engineering properties for soft soil in a sea area of Haikou[J]. Rock and Soil Mechanics, 2002, 23(1): 36-40. (in Chinese)
    [15]
    周晖, 房营光, 禹长江. 广州软土固结过程微观结构的显微观测与分析[J]. 岩石力学与工程学报, 2009, 28(增刊2): 3830-3837.

    ZHOU Hui, FANG Yingguang, YU Changjiang. Micro-structure observation and analysis of Guangzhou soft soil during consolidation process[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28(S2): 3830-3837. (in Chinese)
    [16]
    张先伟, 孔令伟. 利用扫描电镜、压汞法、氮气吸附法评价近海黏土孔隙特征[J]. 岩土力学, 2013, 34(增刊2): 134-142.

    ZHANG Xianwei, KONG Lingwei. Study of pore characteristics of offshore clay by SEM and MIP and NA methods[J]. Rock and Soil Mechanics, 2013, 34(S2): 134-142. (in Chinese)
    [17]
    刘文涛, 石要红, 张旭辉, 等. 西沙海槽东部海底浅表层土工程地质特性及水合物细粒土力学性质试验[J]. 海洋地质与第四纪地质, 2014, 34(3): 39-47.

    LIU Wentao, SHI Yaohong, ZHANG Xuhui, et al. Geotechnical features of the seabed soils in the east of Xisha trough and the mechanical properties of gas hydrate-bearing fine deposits[J]. Marine Geology & Quaternary Geology, 2014, 34(3): 39-47. (in Chinese)
    [18]
    蒋明镜, 李志远, 黄贺鹏, 等. 南海软土微观结构与力学特性试验研究[J]. 岩土工程学报, 2017, 39(增刊2): 17-20. doi: 10.11779/CJGE2017S2005

    JIANG Mingjing, LI Zhiyuan, HUANG Hepeng, et al. Experimental study on microstructure and mechanical properties of seabed soft soil from South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(S2): 17-20. (in Chinese) doi: 10.11779/CJGE2017S2005
    [19]
    年廷凯, 范宁, 焦厚滨, 等. 南海北部陆坡软黏土全流动强度试验研究[J]. 岩土工程学报, 2018, 40(4): 602-611. doi: 10.11779/CJGE201804003

    NIAN Tingkai, FAN Ning, JIAO Houbin, et al. Full-flow strength tests on the soft clay in the northern slope of the South China Sea[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(4): 602-611. (in Chinese) doi: 10.11779/CJGE201804003
    [20]
    WANG L, LEI H Y, BO Y, et al. Geotechnical behavior of soft dredger fill and deep sea soft clay[J]. IOP Conference Series: Earth and Environmental Science, 2020, 570(6): 062036.
    [21]
    土工试验方法标准: GB/T 50123—2019[S]. 北京: 中国计划出版社, 2019.

    Standard for Geotechnical Testing Method: GB/T 50123—2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
    [22]
    MESRI G, GODLEWSKI P M. Time- and stress-compressibility interrelationship[J]. Journal of the Geotechnical Engineering Division, 1977, 103(5): 417-430.

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return