• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Ya-song, WANG Shui, ZHOU Shi-ji, XIA Wei-yi, GE Yu-xiang, ZHONG Dao-xu, DU Yan-jun. Stability of solidified/stabilized heavy metal-contaminated clay under outdoor natural exposure and indoor standard curing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 154-157. DOI: 10.11779/CJGE2021S2037
Citation: FENG Ya-song, WANG Shui, ZHOU Shi-ji, XIA Wei-yi, GE Yu-xiang, ZHONG Dao-xu, DU Yan-jun. Stability of solidified/stabilized heavy metal-contaminated clay under outdoor natural exposure and indoor standard curing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 154-157. DOI: 10.11779/CJGE2021S2037

Stability of solidified/stabilized heavy metal-contaminated clay under outdoor natural exposure and indoor standard curing

More Information
  • Received Date: August 16, 2021
  • Available Online: December 05, 2022
  • A comparative study on the strength and leaching properties of a nickel- and copper-contaminated soil hydroxyapatite-solidified/stabilized by a novel based binder is introduced under natural exposure and indoor curing. After a 360-d monitoring, the soil specimens are subjected to unconfined compression strength (UCS), leachability and soil pH tests. The results demonstrate that the UCS and pH of the contaminated soil remarkably increase with the addition of SPC, but the leaching concentrations of nickel and copper significantly decrease. With 5% binder addatin the leaching concentrations of nickel and copper are below their remediation goals after 7 d. The comparison shows that the strength and pH of the soil specimens under natural exposure is lower than that under indoor curing. Meanwhile, the leached concentrations of heavy metals of the treated soil under the two conditions is opposite. At 600 d, the slightly increased leachability of the treated soil still meets the remediation goal. The UCS of the treated soil decreased by 2.6%, and the pH value of the treated soil decreased by 0.3 units.
  • [1]
    QU C S, WANG S, ENGELUND HOLM P. Soil clean-up needs cash and clarity[J]. Nature, 2016, 538(7625): 317.
    [2]
    ZHOU Y, LIU Y. China’s fight against soil pollution[J]. Science, 2018, 362(6412): 298. doi: 10.1126/science.aav4061
    [3]
    SPENCE R D, SHI C J. Stabilization and solidification of hazardous, radioactive and mixed wastes[M]. Washington D C: CRC Press, 2004.
    [4]
    刘松玉. 污染场地测试评价与处理技术[J]. 岩土工程学报, 2018, 40(1): 1-37. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801002.htm

    LIU Song-yu. Geotechnical investigation and remediation for industrial contaminated sites[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(1): 1-37. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201801002.htm
    [5]
    XIA W Y, FENG Y S, JIN F, et al. Stabilization and solidification of a heavy metal contaminated site soil using a hydroxyapatite based binder[J]. Construction and Building Materials, 2017, 156: 199-207. doi: 10.1016/j.conbuildmat.2017.08.149
    [6]
    冯亚松, 夏威夷, 杜延军, 等. SPB和SPC固化稳定化镍锌污染土的强度及环境特性研究[J]. 岩石力学与工程学报, 2017, 36(12): 3062-3074. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712020.htm

    FENG Ya-song, XIA Wei-yi, DU Yan-jun, et al. Experimental study on the strength and environmental properties of Ni and Zn contaminated soil stabilized by SPB and SPC binders[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36(12): 3062-3074. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201712020.htm
    [7]
    FENG Y S, DU Y J, ZHOU A N, et al. Geoenvironmental properties of industrially contaminated site soil solidified/stabilized with a sustainable by-product-based binder[J]. Science of the Total Environment, 2021, 765: 142778. doi: 10.1016/j.scitotenv.2020.142778
    [8]
    重金属铅、锌、镉、铜、镍污染土壤原地修复技术规范:HG/T 20713—2020[S]. 2020.

    Technical Code for On-Site Solidification/Stabilization of Soil Contaminated with Lead, Zinc, Cadmium, Copper, and Nickel: HG/T 20713—2020[S]. 2020. (in Chinese)
    [9]
    MOHANTY S K, SAIERS J E, RYAN J N. Colloid mobilization in a fractured soil during dry-wet cycles: role of drying duration and flow path permeability[J]. Environmental Science & Technology, 2015, 49(15): 9100-9106.
    [10]
    MOHANTY S K, SAIERS J E, RYAN J N. Colloid-facilitated mobilization of metals by freeze-thaw cycles[J]. Environmental Science & Technology, 2014, 48(2): 977-984.
    [11]
    DU Y J, JIANG N J, LIU S Y, et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated Kaolin[J]. Canadian Geotechnical Journal, 2014, 51(3): 289-302. doi: 10.1139/cgj-2013-0177
  • Related Articles

    [1]CAO Xiaolin, ZHOU Fengxi, DAI Guoliang. Dynamic response analysis of saturated soils and single pile under horizontal loads[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(S2): 73-78. DOI: 10.11779/CJGE2023S20004
    [2]HUANG Juan, HU Zhongwei, YU Jun, LI Dongkai. Pile-top impedance of pile foundation in liquefied soil based on viscous fluid mechanics[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1063-1071. DOI: 10.11779/CJGE20220322
    [3]WANG Zhi-hua, HE Jian, GAO Hong-mei, WANG Bing-hui, SHEN Ji-rong. Dynamic pore water pressure model for liquefiable soils based on theory of thixotropic fluid[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(12): 2332-2340. DOI: 10.11779/CJGE201812023
    [4]LUAN Lu-bao, DING Xuan-ming, LIU Han-long, ZHENG Chang-jie. Analytical solution of lateral dynamic response of a large diameter pipe pile considering influence of axial load[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(10): 1859-1868. DOI: 10.11779/CJGE201610015
    [5]AI Zhi-yong, LI Zhi-xiong. Horizontal vibration of a pile group in transversely isotropic layered soils under scour conditions[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(4): 613-618. DOI: 10.11779/CJGE201604004
    [6]ZHENG Chang-jie, LIU Han-long, DING Xuan-ming, FU Qiang. Analytical solution of horizontal vibration of cast-in-place large-diameter pipe piles in saturated soils[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(8): 1447-1454. DOI: 10.11779/CJGE201408010
    [7]YU Jun, SHANG Shouping, LI Zhong, REN Hui, ZENG Yulin. Dynamical characteristics of an end bearing pile embedded in saturated soil under horizontal vibration[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(3): 408-415.
    [8]SHANG Shouping, YU Jun, WANG Haidong, REN Hui. Horizontal vibration of piles in saturated soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(11): 1696-1702.
    [9]HU Changbin, ZHANG Tao. Study on soil-pile interaction in torsional vibrations[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(2): 184-190.
    [10]HUANG Maosong, WU Zhiming, REN Qing. Lateral vibration of pile groups in layered soil[J]. Chinese Journal of Geotechnical Engineering, 2007, 29(1): 32-38.
  • Cited by

    Periodical cited type(5)

    1. 张硕,张翰清,张昕,姜彤,吴嘉绪,杨创维. 动水驱动作用下边坡灾变防控研究综述. 人民长江. 2025(02): 134-143+151 .
    2. 范钢伟,骆韬,张东升,张世忠,范张磊. 碱水作用下弱胶结粉砂岩孔隙结构分形特征与非线性劣化机制. 中国矿业大学学报. 2024(01): 34-45 .
    3. 蔡国军,田宏亮,刘路路,刘晓燕,章荣军. 复杂环境下膨胀土工程特性演化特征研究进展. 应用基础与工程科学学报. 2024(06): 1511-1537 .
    4. 刘剑,关钰荣,王会昊,邵振宝,徐兴倩. 水土化学力学效应研究现状与展望. 科学技术与工程. 2023(10): 4019-4032 .
    5. 肖桂元,裴心成,刘冲,刘闯,刘芠君. 酸雨对丹江口库区膨胀土变形和微观结构影响研究. 青海大学学报. 2023(04): 86-91 .

    Other cited types(6)

Catalog

    Article views PDF downloads Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return