Citation: | HU Shi-jun, CHEN Pan, WEI Chang-fu, YI Pan-pan, WANG Yong. Effect of NaCl solution on primary physical-mechanical behaviors of deep-sea sediments[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 142-145. DOI: 10.11779/CJGE2021S2034 |
[1] |
SONG M M, ZENG L L, HONG Z S. Pore fluid salinity effects on physicochemical-compressive behaviour of reconstituted marine clays[J]. Applied Clay Science, 2017, 146: 270-277. doi: 10.1016/j.clay.2017.06.015
|
[2] |
张彤炜, 邓永锋, 吴子龙, 等. 考虑孔隙水盐分效应的人工软黏土工程特性与本构模型[J]. 岩土工程学报, 2018, 40(9): 1690-1697. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809019.htm
ZHANG Tong-wei, DENG Yong-feng, WU Zi-long, et al. Engineering behavior and constitutive model of artificial soft clay considering pore water salinity effect[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(9): 1690-1697. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201809019.htm
|
[3] |
VERMEIJDEN C, KAY S, GOEDEMOED S. Influence of salinity on soil properties[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics. 2005.
|
[4] |
PUECH A, DELAGE P, DE GENNARO V. On the compressibility of deepwater sediments of the Gulf of Guinea[C]//Proceedings of the 1st International Symposium on Frontiers in Offshore Geotechnics. 2005.
|
[5] |
LI H, KONG G Q, WEN L, et al. Pore pressure and strength behaviors of reconstituted marine sediments involving thermal effects[J]. International Journal of Geomechanics, 2021, 21(4): 06021008. doi: 10.1061/(ASCE)GM.1943-5622.0001984
|
[6] |
THOMPSON D, BEASLEY D J, TRUE D G, et al. Handbook for Marine Geotechnical Engineering[M]. Hueneme: Naval Facilities Engineering Command Port, 2012.
|
[7] |
SRIDHARAN A, PRAKASH K. Characteristic water contents of a fine-grained soil-water system[J]. Géotechnique, 1998, 48(3): 337-346. doi: 10.1680/geot.1998.48.3.337
|
[8] |
土工试验方法标准:GB/T50123-2019[S]. 北京: 中国计划出版社, 2019.
Standard for Geotechnical Test Method: GB/T50123-2019[S]. Beijing: China Planning Press, 2019. (in Chinese)
|
[9] |
MITCHELL J K, SOGA K. Fundamentals of Soil Behavior[M]. 3rd ed. New York: Wiley, 2005.
|
[10] |
YING Z, CUI Y J, DUC M, et al. Salinity effect on the liquid limit of soils[J]. Acta Geotechnica, 2021, 16(4): 1101-1111. doi: 10.1007/s11440-020-01092-7
|
[1] | WANG Cai-jin, ZHANG Tao, LUO Jun-hui, MA Chong, DUAN Long-chen. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109-112. DOI: 10.11779/CJGE2019S2028 |
[2] | LIU Huanyu, WANG Sijing, ZENG Qianbang, HU Bo, XIA Zhengyi. Judgment for non-mining fracture of shaft-lining in Yanzhou mine based on fuzzy neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1237-1240. |
[3] | DING Dexin, ZHANG Zhijun. Application of ANFIS-based approach for back analysis of displacements in Xiangxi gold mine[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1123-1128. |
[4] | ZHU Qingjie, MA Yajie, CHEN Yanhua. Evaluation of regional crust based on ANN[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1105-1109. |
[5] | DING Dexin, ZHANG Zhijun. Study on ANFIS-based approach for inverse design of with circular failure surface sliding slopes[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 202-206. |
[6] | CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232. |
[7] | ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710. |
[8] | WANG Shuhong, HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 572-575. |
[9] | WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505. |
[10] | SUN Jun, YUAN Jinrong. Soil disturbance and ground movement under shield tunnelling and its intelligent prediction by using ANN technology[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 261-267. |
1. |
杨泽华,张高才,江帆,罗佳湘,张超. 不同水因素影响下土石混填体承载力学特性研究. 公路. 2024(06): 28-35 .
![]() | |
2. |
任明辉,赵光思,浦海,尹乾,王涛. 无黏性松散土石混合体剪切特性的结构效应及强度模型构建. 岩石力学与工程学报. 2024(07): 1707-1721 .
![]() | |
3. |
王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
![]() | |
4. |
Zhou Wei,Hou Tianshun,Chen Ye,Wang Qi,Luo Yasheng,Zhang Yafei. Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method. Earthquake Engineering and Engineering Vibration. 2024(04): 815-828 .
![]() |
|
5. |
王治林,郑明明,夏敏,熊亮,吴祖锐,王凯. 不同边界对花岗岩三轴试验影响的三维离散元数值研究. 钻探工程. 2023(01): 150-158 .
![]() | |
6. |
崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
![]() | |
7. |
蒋成龙,许成顺,张小玲,王晓丽. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究. 土木工程学报. 2021(05): 77-86 .
![]() | |
8. |
王恒通,王家全,唐毅,黄文勤. 组合Clump颗粒加筋砂土三轴剪切试验离散元模拟分析. 广西科技大学学报. 2021(03): 34-41 .
![]() | |
9. |
张强,汪小刚,赵宇飞,周家文,孟庆祥,周梦佳. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究. 岩土工程学报. 2019(08): 1545-1554 .
![]() |