• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025
Citation: ZHAO Ze-ning, DUAN Wei, CAI Guo-jun, LIU Song-yu, CHANG Jian-xin, FENG Hua-lei. Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S2): 104-107. DOI: 10.11779/CJGE2021S2025

Evaluation of stress history of clays based on intelligent CPTU machine learning algorithm

More Information
  • Received Date: August 15, 2021
  • Available Online: December 05, 2022
  • The stress history is an important index to measure the stability and deformation characteristics of soils, which is often expressed by the overconsolidation ratio (OCR). Based on the CPTU dataset of Jiangsu Province, and taking the laboratory oedometer test data as the reference values, the stress history is evaluated using the multiple adaptive regression splines (MARS) and adaptive fuzzy neural network (ANFIS) algorithms. Then, the results are compared with the reference values and the estimated results of the traditional CPTU method. Finally, the sensitivity analysis is carried out to study the effect of input parameters. The results show that both the MARS model and the ANFIS model can accurately predict the OCR, and the performance is significantly better than that of the traditional CPTU model. Moreover, the MARS model performs best among all the models. In engineering practice, the original CPTU test parameters (qt, fs and u2) are recommended as the input variables. The results of sensitivity analysis of the MARS model are consistent with those of theoretical analysis, which further proves the reliability of the MARS model. The proposed intelligent models can more accurately predict the OCR of clays and guide engineering practice.
  • [1]
    MAYNE P W. Determination of OCR in clays by piezocone tests using cavity expansion and critical state concepts[J]. Soils and Foundations, 1991, 31(2): 65-76. doi: 10.3208/sandf1972.31.2_65
    [2]
    刘晓燕, 蔡国军, 邹海峰, 等. 基于CPTU数据融合技术的黏性土应力历史与强度特性评价研究[J]. 岩土工程学报, 2019, 41(7): 1270-1278. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907013.htm

    LIU Xiao-yan, CAI Guo-jun, ZOU Hai-feng, et al. Prediction of stress history and strength of cohesive soils based on CPTU and data fusion techniques[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(7): 1270-1278. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201907013.htm
    [3]
    ZHAO Z N, DUAN W, CAI G J. A novel PSO-KELM based soil liquefaction potential evaluation system using CPT and Vs measurement[J]. Soil Dynamics and Earthquake Engineering, 2021(150): 106930.
    [4]
    LUNNE T, POWELL J J M, ROBERTSON P K. Cone Penetration Testing in Geotechnical Practice[M]. CRC Press, 2002.
    [5]
    ROBERTSON P K. Interpretation of cone penetration tests—a unified approach[J]. Canadian Geotechnical Journal, 2009, 46(11): 1337-1355. doi: 10.1139/T09-065
    [6]
    GOH A T C, ZHANG W G. An improvement to MLR model for predicting liquefaction-induced lateral spread using multivariate adaptive regression splines[J]. Engineering Geology, 2014, 170(3): 1-10.
    [7]
    KAYA Z. Predicting liquefaction-induced lateral spreading by using neural network and neuro-fuzzy techniques[J]. International Journal of Geomechanics, 2016, 16(4): 04015095. doi: 10.1061/(ASCE)GM.1943-5622.0000607
    [8]
    ZHANG W G, GOH A T C, ZHANG Y M, et al. Assessment of soil liquefaction based on capacity energy concept and multivariate adaptive regression splines[J]. Engineering Geology, 2015, 188: 29-37. doi: 10.1016/j.enggeo.2015.01.009
    [9]
    ZHANG W G, GOH A T C. Multivariate adaptive regression splines and neural network models for prediction of pile drivability[J]. Geoscience Frontiers, 2016, 7(1): 45-52. doi: 10.1016/j.gsf.2014.10.003
    [10]
    MOAYEDI H, RAFTARI M, SHARIFI A, et al. Optimization of ANFIS with GA and PSO estimating α ratio in driven piles[J]. Engineering With Computers, 2020, 36(1): 227-238. doi: 10.1007/s00366-018-00694-w
    [11]
    ZOU H F, LIU S Y, CAI G J, et al. Multivariate correlation analysis of seismic piezocone penetration (SCPTU) parameters and design properties of Jiangsu quaternary cohesive soils[J]. Engineering Geology, 2017, 228(1/2): 11-38.
    [12]
    SY CHEN B, MAYNE P W. Statistical relationships between piezocone measurements and stress history of clays[J]. Canadian Geotechnical Journal, 1996, 33(3): 488-498. doi: 10.1139/t96-070
  • Related Articles

    [1]WANG Cai-jin, ZHANG Tao, LUO Jun-hui, MA Chong, DUAN Long-chen. Utilization of neural network feedback method to prediction of thermal resistivity of soils[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S2): 109-112. DOI: 10.11779/CJGE2019S2028
    [2]LIU Huanyu, WANG Sijing, ZENG Qianbang, HU Bo, XIA Zhengyi. Judgment for non-mining fracture of shaft-lining in Yanzhou mine based on fuzzy neural network[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1237-1240.
    [3]DING Dexin, ZHANG Zhijun. Application of ANFIS-based approach for back analysis of displacements in Xiangxi gold mine[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(10): 1123-1128.
    [4]ZHU Qingjie, MA Yajie, CHEN Yanhua. Evaluation of regional crust based on ANN[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(9): 1105-1109.
    [5]DING Dexin, ZHANG Zhijun. Study on ANFIS-based approach for inverse design of with circular failure surface sliding slopes[J]. Chinese Journal of Geotechnical Engineering, 2004, 26(2): 202-206.
    [6]CHEN Haijun, LI Nenghui, NIE Dexin, SHANG Yuequan. A model for prediction of rockburst by artificial neural network[J]. Chinese Journal of Geotechnical Engineering, 2002, 24(2): 229-232.
    [7]ZHU Chuanqu, MIAO Xiexing, XIE Donghai. A model for optimization of support patterns of soft rock roadway based on neural network[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(6): 708-710.
    [8]WANG Shuhong, HAO Zhe. The genetic algorithm-neural network method to forecast the miniature crack grouting in rock matrix[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(5): 572-575.
    [9]WANG Lianguo, SONG Yang. Combined ANN forecast of water-inrush from coal floor[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(4): 502-505.
    [10]SUN Jun, YUAN Jinrong. Soil disturbance and ground movement under shield tunnelling and its intelligent prediction by using ANN technology[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 261-267.
  • Cited by

    Periodical cited type(9)

    1. 杨泽华,张高才,江帆,罗佳湘,张超. 不同水因素影响下土石混填体承载力学特性研究. 公路. 2024(06): 28-35 .
    2. 任明辉,赵光思,浦海,尹乾,王涛. 无黏性松散土石混合体剪切特性的结构效应及强度模型构建. 岩石力学与工程学报. 2024(07): 1707-1721 .
    3. 王辉,钮新强,马刚,周伟. 干湿循环作用下堆石料宏细观力学特性的离散元模拟研究. 岩土力学. 2024(S1): 665-676 .
    4. Zhou Wei,Hou Tianshun,Chen Ye,Wang Qi,Luo Yasheng,Zhang Yafei. Dynamic failure process of expanded polystyrene particle lightweight soil under cyclic loading using discrete element method. Earthquake Engineering and Engineering Vibration. 2024(04): 815-828 .
    5. 王治林,郑明明,夏敏,熊亮,吴祖锐,王凯. 不同边界对花岗岩三轴试验影响的三维离散元数值研究. 钻探工程. 2023(01): 150-158 .
    6. 崔熙灿,张凌凯,王建祥. 高堆石坝砂砾石料的细观参数反演及三轴试验模拟. 农业工程学报. 2022(04): 113-122 .
    7. 蒋成龙,许成顺,张小玲,王晓丽. 三维柔性边界构建方法及其对砾质土变形发展影响的离散元数值研究. 土木工程学报. 2021(05): 77-86 .
    8. 王恒通,王家全,唐毅,黄文勤. 组合Clump颗粒加筋砂土三轴剪切试验离散元模拟分析. 广西科技大学学报. 2021(03): 34-41 .
    9. 张强,汪小刚,赵宇飞,周家文,孟庆祥,周梦佳. 基于围压柔性加载的土石混合体大型三轴试验离散元模拟研究. 岩土工程学报. 2019(08): 1545-1554 . 本站查看

    Other cited types(26)

Catalog

    Article views (205) PDF downloads (127) Cited by(35)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return