Citation: | XIAO Tao, LI Ping, SHAO Sheng-jun. Microstructural evolution of compacted loess during consolidation and shearing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 99-104. DOI: 10.11779/CJGE2021S1018 |
[1] |
JUANG C H, DIJKSTRA T, WASOWSKI J, et al. Loess geohazards research in China: Advances and challenges for mega engineering projects[J]. Engineering Geology, 2019, 251: 1-10. doi: 10.1016/j.enggeo.2019.01.019
|
[2] |
LI X, LI L C, SONG Y X, et al. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective[J]. Engineering Geology, 2019, 249: 77-88. doi: 10.1016/j.enggeo.2018.12.024
|
[3] |
曹杰, 张继文, 郑建国, 等. 黄土地区平山造地岩土工程设计方法浅析[J]. 岩土工程学报, 2019, 41(S1): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1029.htm
CAO Jie, ZHANG Ji-wen, ZHENG Jian-guo, et al. Design of high fill reclamation projects in loess areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1029.htm
|
[4] |
谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. doi: 10.3321/j.issn:1000-4548.1999.06.003
XIE Dingyi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.06.003
|
[5] |
胡再强, 沈珠江, 谢定义. 结构性黄土的变形特性[J]. 岩石力学与工程学报, 2004, 23(24): 4142-4146. doi: 10.3321/j.issn:1000-6915.2004.24.008
HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi. Deformation properties of structural loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4142-4146. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.24.008
|
[6] |
方祥位, 申春妮, 汪龙, 等. Q2黄土浸水前后微观结构变化研究[J]. 岩土力学, 2013, 34(5): 1319-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305014.htm
FANG Xiang-wei, SHEN Chun-ni, WANG Long, et al. Collapsible deformation properties of Q2 loess[J]. Rock and Soil Mechanics, 2013, 34(5): 1319-1324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305014.htm
|
[7] |
LI P, XIE W L, PAK R Y S, et al. Microstructural evolution of loess soils from the Loess Plateau of China[J]. CATENA, 2019, 173: 276-288. doi: 10.1016/j.catena.2018.10.006
|
[8] |
JIANG M J, SHEN Z J, ADACHI T, et al. Microscopic analysis on artificially-prepared structured collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 486-491. doi: 10.3321/j.issn:1000-4548.1999.04.019
|
[9] |
NG C W W, SADEGHI H, HOSSEN S B, et al. Water retentionandvolumetriccharacteristicsofintactand recompacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258-1269. doi: 10.1139/cgj-2015-0364
|
[10] |
SHAO X X, ZHANG H Y, TAN Y. Collapse behavior and microstructural alteration of remolded loess under graded wetting tests[J]. Engineering Geology, 2018, 233: 11-22. doi: 10.1016/j.enggeo.2017.11.025
|
[11] |
蒲毅彬, 陈万业, 廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报, 2000, 22(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001008.htm
PU Yi-bin, CHEN Wan-ye, LIAO Quan-rong. Research on CT structure changing for damping process of loess in Longdong[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001008.htm
|
[12] |
雷胜友, 唐文栋. 黄土在受力和湿陷过程中微结构变化的CT扫描分析[J]. 岩石力学与工程学报, 2004, 23(24): 4166-4169. doi: 10.3321/j.issn:1000-6915.2004.24.013
LEI Sheng-you, TANG Wen-dong. Analysis of microstructure change for loess in the process of loading collapse with CT scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4166-4169. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.24.013
|
[13] |
朱元青, 陈正汉. 原状Q3黄土在加载和湿陷过程中细观结构动态演化的CT-三轴试验研究[J]. 岩土工程学报, 2009, 31(8): 1219-1228. doi: 10.3321/j.issn:1000-4548.2009.08.011
ZHU Yuan-qing, CHEN Zhenghan. Experimental study on dynamic evolution of mesostructure of intact Q3loess during loading and collapse using CT andtriaxialapparatus[J]. ChineseJournalof Geotechnical Engineering, 2009, 31(8): 1219-1228. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.011
|
[14] |
CASINI F, VAUNAT J, ROMERO E, et al. Consequences on water retention properties of double-porosity features in a compacted silt[J]. Acta Geotechnica, 2012, 7(2): 139-150. doi: 10.1007/s11440-012-0159-6
|
[15] |
JIANG M J, ZHANG F G, HU H J, et al. Structural characterization of natural loess and remolded loess under triaxial tests[J]. Engineering Geology, 2014, 181: 249-260. doi: 10.1016/j.enggeo.2014.07.021
|
[16] |
CHEN Z F, CHEN H E, LI J F, et al. Study on the changing rules of silty clay's pore structure under freeze-thaw cycles[J]. Advances in Civil Engineering, 2019, 2019(1): 1-11.
|
[17] |
DELAGE P, LEFEBVRE G. Study of the structure of a sensitiveChamplainclayandofitsevolutionduring consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35. doi: 10.1139/t84-003
|
[18] |
GRIFFITHS F J, JOSHI R C. Change in pore size distribution due to secondary consolidation of clays[J]. Géotechnique, 1989, 39(1): 159-167. doi: 10.1680/geot.1989.39.1.159
|
[19] |
胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm
HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm
|
[20] |
FRIESEN W I, MIKULA R J. Fractal dimensions of coal particles[J]. Journal of Colloid and Science, 1987, 120(1): 263-271.
|
[21] |
SUN HQ, MAŠÍND , NAJSERJ , etal. Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods[J]. Acta Geotechnica, 2020, 15(6): 1655-1671. doi: 10.1007/s11440-019-00857-z
|