• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIAO Tao, LI Ping, SHAO Sheng-jun. Microstructural evolution of compacted loess during consolidation and shearing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 99-104. DOI: 10.11779/CJGE2021S1018
Citation: XIAO Tao, LI Ping, SHAO Sheng-jun. Microstructural evolution of compacted loess during consolidation and shearing[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 99-104. DOI: 10.11779/CJGE2021S1018

Microstructural evolution of compacted loess during consolidation and shearing

More Information
  • Received Date: December 28, 2020
  • Available Online: December 05, 2022
  • To understand the microstructural evolution of compacted loess during consolidation and shearing, the triaxial tests and the MIP technology are used to acquire the pore-size distribution curve of compacted loess specimens with different stress and strain states.By analyzing the pore-size distribution characteristics of compacted loess specimens, the microstructural evolution of compacted loess during consolidation and shearing is studied.The results show that the compacted loess tested is strongly contractive during shearing, and the evolution of the pore-size distribution of compacted loess during consolidation is similar to that during shearing.The intra-aggregate pores are not affected, only the inter-aggregate pores are compressed.In addition, based on the pore-size distribution curve, the fractal dimension of each specimen is calculated by the fractal theory, which changes a little from specimen to specimen.It is indicated that the roughness of pore surface changes little during the process of consolidation and shearing, and there is no obvious correlation between fractal dimension, void ratio and axial strain.The research results indicate that the mechanical response of compacted loess is due to the interaction between aggregates, while not between particles.
  • [1]
    JUANG C H, DIJKSTRA T, WASOWSKI J, et al. Loess geohazards research in China: Advances and challenges for mega engineering projects[J]. Engineering Geology, 2019, 251: 1-10. doi: 10.1016/j.enggeo.2019.01.019
    [2]
    LI X, LI L C, SONG Y X, et al. Characterization of the mechanisms underlying loess collapsibility for land-creation project in Shaanxi Province, China—a study from a micro perspective[J]. Engineering Geology, 2019, 249: 77-88. doi: 10.1016/j.enggeo.2018.12.024
    [3]
    曹杰, 张继文, 郑建国, 等. 黄土地区平山造地岩土工程设计方法浅析[J]. 岩土工程学报, 2019, 41(S1): 109-112. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1029.htm

    CAO Jie, ZHANG Ji-wen, ZHENG Jian-guo, et al. Design of high fill reclamation projects in loess areas[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(S1): 109-112. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC2019S1029.htm
    [4]
    谢定义, 齐吉琳. 土结构性及其定量化参数研究的新途径[J]. 岩土工程学报, 1999, 21(6): 651-656. doi: 10.3321/j.issn:1000-4548.1999.06.003

    XIE Dingyi, QI Ji-lin. Soil structure characteristics and new approach in research on its quantitative parameter[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(6): 651-656. (in Chinese) doi: 10.3321/j.issn:1000-4548.1999.06.003
    [5]
    胡再强, 沈珠江, 谢定义. 结构性黄土的变形特性[J]. 岩石力学与工程学报, 2004, 23(24): 4142-4146. doi: 10.3321/j.issn:1000-6915.2004.24.008

    HU Zai-qiang, SHEN Zhu-jiang, XIE Ding-yi. Deformation properties of structural loess[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4142-4146. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.24.008
    [6]
    方祥位, 申春妮, 汪龙, 等. Q2黄土浸水前后微观结构变化研究[J]. 岩土力学, 2013, 34(5): 1319-1324. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305014.htm

    FANG Xiang-wei, SHEN Chun-ni, WANG Long, et al. Collapsible deformation properties of Q2 loess[J]. Rock and Soil Mechanics, 2013, 34(5): 1319-1324. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201305014.htm
    [7]
    LI P, XIE W L, PAK R Y S, et al. Microstructural evolution of loess soils from the Loess Plateau of China[J]. CATENA, 2019, 173: 276-288. doi: 10.1016/j.catena.2018.10.006
    [8]
    JIANG M J, SHEN Z J, ADACHI T, et al. Microscopic analysis on artificially-prepared structured collapsible loess[J]. Chinese Journal of Geotechnical Engineering, 1999, 21(4): 486-491. doi: 10.3321/j.issn:1000-4548.1999.04.019
    [9]
    NG C W W, SADEGHI H, HOSSEN S B, et al. Water retentionandvolumetriccharacteristicsofintactand recompacted loess[J]. Canadian Geotechnical Journal, 2016, 53(8): 1258-1269. doi: 10.1139/cgj-2015-0364
    [10]
    SHAO X X, ZHANG H Y, TAN Y. Collapse behavior and microstructural alteration of remolded loess under graded wetting tests[J]. Engineering Geology, 2018, 233: 11-22. doi: 10.1016/j.enggeo.2017.11.025
    [11]
    蒲毅彬, 陈万业, 廖全荣. 陇东黄土湿陷过程的CT结构变化研究[J]. 岩土工程学报, 2000, 22(2): 49-54. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001008.htm

    PU Yi-bin, CHEN Wan-ye, LIAO Quan-rong. Research on CT structure changing for damping process of loess in Longdong[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(2): 49-54. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC200001008.htm
    [12]
    雷胜友, 唐文栋. 黄土在受力和湿陷过程中微结构变化的CT扫描分析[J]. 岩石力学与工程学报, 2004, 23(24): 4166-4169. doi: 10.3321/j.issn:1000-6915.2004.24.013

    LEI Sheng-you, TANG Wen-dong. Analysis of microstructure change for loess in the process of loading collapse with CT scanning[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(24): 4166-4169. (in Chinese) doi: 10.3321/j.issn:1000-6915.2004.24.013
    [13]
    朱元青, 陈正汉. 原状Q3黄土在加载和湿陷过程中细观结构动态演化的CT-三轴试验研究[J]. 岩土工程学报, 2009, 31(8): 1219-1228. doi: 10.3321/j.issn:1000-4548.2009.08.011

    ZHU Yuan-qing, CHEN Zhenghan. Experimental study on dynamic evolution of mesostructure of intact Q3loess during loading and collapse using CT andtriaxialapparatus[J]. ChineseJournalof Geotechnical Engineering, 2009, 31(8): 1219-1228. (in Chinese) doi: 10.3321/j.issn:1000-4548.2009.08.011
    [14]
    CASINI F, VAUNAT J, ROMERO E, et al. Consequences on water retention properties of double-porosity features in a compacted silt[J]. Acta Geotechnica, 2012, 7(2): 139-150. doi: 10.1007/s11440-012-0159-6
    [15]
    JIANG M J, ZHANG F G, HU H J, et al. Structural characterization of natural loess and remolded loess under triaxial tests[J]. Engineering Geology, 2014, 181: 249-260. doi: 10.1016/j.enggeo.2014.07.021
    [16]
    CHEN Z F, CHEN H E, LI J F, et al. Study on the changing rules of silty clay's pore structure under freeze-thaw cycles[J]. Advances in Civil Engineering, 2019, 2019(1): 1-11.
    [17]
    DELAGE P, LEFEBVRE G. Study of the structure of a sensitiveChamplainclayandofitsevolutionduring consolidation[J]. Canadian Geotechnical Journal, 1984, 21(1): 21-35. doi: 10.1139/t84-003
    [18]
    GRIFFITHS F J, JOSHI R C. Change in pore size distribution due to secondary consolidation of clays[J]. Géotechnique, 1989, 39(1): 159-167. doi: 10.1680/geot.1989.39.1.159
    [19]
    胡冉, 陈益峰, 周创兵. 基于孔隙分布的变形土土水特征曲线模型[J]. 岩土工程学报, 2013, 35(8): 1451-1462. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm

    HU Ran, CHEN Yi-feng, ZHOU Chuang-bing. A water retention curve model for deformable soils based on pore size distribution[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(8): 1451-1462. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201308013.htm
    [20]
    FRIESEN W I, MIKULA R J. Fractal dimensions of coal particles[J]. Journal of Colloid and Science, 1987, 120(1): 263-271.
    [21]
    SUN HQ, MAŠÍND , NAJSERJ , etal. Fractal characteristics of pore structure of compacted bentonite studied by ESEM and MIP methods[J]. Acta Geotechnica, 2020, 15(6): 1655-1671. doi: 10.1007/s11440-019-00857-z

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return