| Citation: | DANG Fa-ning, ZHOU Mei, LI Yu-tao, DING Jiu-long, GAO Jun. Critical hydraulic gradient of soil flow failure in cohesive soil foundation[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 1-6. DOI: 10.11779/CJGE2021S1001 |
In view of the fact that the current formula for the critical hydraulic gradient is not suitable to solve the critical hydraulic gradient of cohesive soil, assuming that the seepage failure mode of the cohesive soil foundation is cylindrical or inverted circular, based on the formula for calculating the critical hydraulic slope proposed by Terzaghi, the analytical formula for the critical hydraulic slope under two failure modes considering the influences of the shear strength of the soil is derived respectively.In addition, the critical hydraulic slope of sandy loam and loess under different working conditions is studied by using the self-made permeation failure instrument.The results show that the critical hydraulic slope decreases with the increase of the soil thickness and failure radius, and the maximum error of the test results and the corresponding formula is less than 16%.
| [1] |
汝乃华, 牛运光. 大坝事故与安全·土石坝[M]. 北京: 中国水利水电出版社, 2001.
RU Nai-hua, Niu Yun-guang. Embankment Dam·Incidents and Safety of Large Dams[M]. Beijing: China Water&Power Press, 2001. (in Chinese)
|
| [2] |
毛昶熙. 渗流计算分析与控制[M]. 2版. 北京: 水利电力出版社, 2002: 1-5.
MAO Chang-xi. Seepage Computation Analysis&Control[M]. 2nd ed. Beijing: Water Resources and Electric Power Press, 2002: 1-5. (in Chinese)
|
| [3] |
TERZAGHI K. Der grundbruch an stauwerken und seine verhuetung[J]. Die Wasserkraft, 1922, 17(24): 445-449.
|
| [4] |
ISRAR J, INDRARATNA B. Study of critical hydraulic gradients for seepage-induced failures in granular soils[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2019, 145(7): 04019025. doi: 10.1061/(ASCE)GT.1943-5606.0002062
|
| [5] |
LI M, FANNIN R J. A theoretical envelope for internal instability of cohesionless soil[J]. Géotechnique, 2012, 62(1): 77-80. doi: 10.1680/geot.10.T.019
|
| [6] |
王明年, 江勇涛, 于丽等. 砂性土细颗粒起动临界水力坡降计算方法[J]. 岩土力学. 2020, 41(8): 2515-2524. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008002.htm
WANG Ming-nian, JIANG Yong-tao, YU Li. et.al. Analytical solution of startup critical hydraulic gradient of fine particles migrationinsandysoil[J]. RockandSoil Mechanics, 2020, 41(8): 2515-2524. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202008002.htm
|
| [7] |
姜伏伟. 黏性土渗透破坏临界条件推导及试验探讨[J]. 地下空间与工程学报, 2017, 13(6): 1472-1476. https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201706006.htm
JIANG Fu-wei. Discussion on formula derivation and test of critical hydraulic condition of cohesive soil[J]. Chinese Journal of Underground Space and Engineering, 2017, 13(6): 1472-1476. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-BASE201706006.htm
|
| [8] |
吴梦喜, 高桂云, 杨家修, 等. 砂砾石土的管涌临界渗透坡降预测方法[J]. 岩土力学, 2019, 40(3): 861-870. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903005.htm
WU Meng-xi, GAO Gui-yun, YANG Jia-xiu. et.al. A method of predicting critical gradient for piping of sand and gravel soils[J]. Rock and Soil Mechanics, 2019, 40(3): 861-870. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201903005.htm
|
| [9] |
罗玉龙, 速宝玉, 盛金昌, 等. 对管涌机理的新认识[J]. 岩土工程学报, 2011, 33(12): 1895-1902. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112014.htm
LUO Yu-long, SU Bao-yu, SHENG Jin-chang. et.al. New understandings on piping mechanism[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(12): 1895-1902. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC201112014.htm
|
| [10] |
罗玉龙, 吴强, 詹美礼, 等. 考虑应力状态的悬挂式防渗墙-砂砾石地基管涌临界坡降试验研究[J]. 岩土力学, 2012, 33(S1): 73-78. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1012.htm
LUO Yu-long, WU Qiang, ZHAN Mei-li. et.al. Study of critical piping hydraulic gradient of suspended cut-off wall and sand gravel foundation under different stress states[J]. Rock and Soil Mechanics, 2012, 33(S1): 73-78. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2012S1012.htm
|
| [11] |
唐益群, 施伟华, 张先林. 关于流土和管涌的试验研究和理论分析[J]. 上海地质, 2003, 24(1): 25-31. https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200301005.htm
TANG Yi-qun, SHI Wei-hua, ZHANG Xian-lin. The experiments study and theoretical analyses on piping and flow soil[J]. Shanghai Geology, 2003, 24(1): 25-31. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SHAD200301005.htm
|
| [12] |
LIANG Y, YEH T C J, ZHA Y Y, et al. Onset of suffusion in gap-graded soils under upward seepage[J]. Soils and Foundations, 2017, 57(5): 849-860.
|
| [13] |
杨建, 蔡元奇, 朱以文. 考虑应力状态的接触流土试验研究[J]. 人民长江, 2010, 41(7): 79-81, 101. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201007020.htm
YANG Jian, CAI Yuan-qi, ZHU Yi-wen. Experimental study on contact soil flow considering stress condition[J]. Yangtze River, 2010, 41(7): 79-81, 101. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE201007020.htm
|
| [14] |
党发宁, 刘海伟, 王学武, 等. 基于有效孔隙比的黏性土渗透系数经验公式研究[J]. 岩石力学与工程学报, 2015, 34(9): 1909-1917. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
DANG Fa-ning, LIU Hai-wei, WANG Xue-wu, et al. Empirical formulas of permeability of clay based on effective pore ratio[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(9): 1909-1917. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX201509022.htm
|
| [15] |
蒋中明, 王为, 冯树荣, 等. 砂砾石土渗透变形特性的应力状态相关性试验研究[J]. 水利学报. 2013, 44(12): 1498-1505. https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201312016.htm
JIANG Zhong-ming, WANG Wei, FENG Shu-rong, et al. Experimental of study on the relevance between stress state and seepage failure of sandy-gravel soil[J]. Journal of Hydraulic Engineering, 2013, 44(12): 1498-1505. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SLXB201312016.htm
|
| [16] |
张克恭, 刘松玉. 土力学[M]. 3版. 北京: 中国建筑工业出版社, 2010.
ZHANG Ke-gong, LIU Song-yu. Soil Mechanics[M]. 3rd ed. Beijing: China Architecture&Building Press, 2010. (in Chinese)
|
| [17] |
董晓朋, 马建林, 胡中波, 等. 饱和砂土地基应力扩散效应的离心模型试验研究[J]. 铁道标准设计, 2018, 62(1): 84-88. https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201801018.htm
DONG Xiao-peng, MA Jian-lin, HU Zhong-bo, et al. Study on foundation stress dispersion effect in saturated sand based on centrifugal model test[J]. Railway Standard Design, 2018, 62(1): 84-88. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TDBS201801018.htm
|
| [18] |
麦远俭. 饱和软黏土的土压力[J]. 水运工程. 2000(9): 3-6. https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2017S2063.htm
MAI Yuan-jian. Earth pressure of saturated soft clay[J]. Port&Waterway Engineering, 2000(9): 3-6. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-RIVE2017S2063.htm
|
| [19] |
周玫. 黏性土地基流土破坏的临界水力坡降研究[D]. 西安: 西安理工大学, 2020.
ZHOU Mei. Study on Critical Hydraulic Slope of Fluid Soil Failure on Cohensive Soil[D]. Xi'an: Xu′an University of Technology, 2020. (in Chinese)
|
| [20] |
刘建国. 黏性土渗透破坏试验及其数值模拟研究[D]. 合肥: 合肥工业大学, 2015.
LIU Jian-guo. Experimental Research on Streugth of Unsaturated Expansive Soils[D]. Hefei: Hefei University of Technology, 2015. (in Chinese)
|
| [21] |
贺强. 黏性土渗透破坏及长期渗透劣化试验研究[D]. 合肥: 合肥工业大学, 2017.
HE Qiang. Experimental Study on Seepage and Long-term Seepage Degradation of Clay[D]. Hefei: Hefei University of Technology, 2017. (in Chinese)
|