Citation: | LU Dechun, JIN Chenyi, LIANG Jingyu, LI Zehua, DU Xiuli. State-dependent non-orthogonal elastoplastic constitutive model for sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 221-231. DOI: 10.11779/CJGE20211457 |
[1] |
VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91. doi: 10.3208/sandf.36.2_81
|
[2] |
CAI Z Y, LI X S. Deformation characteristics and critical state of sand[J]. Chinese Journal of Geotechnical Engineering. 2004, 26(5): 697-701. doi: 10.3321/j.issn:1000-4548.2004.05.025
|
[3] |
BEEN K, JEFFERIES M G. A state parameter for sands[J]. Géotechnique, 1985, 35(2): 99-112. doi: 10.1680/geot.1985.35.2.99
|
[4] |
ASAOKA A. Consolidation of clay and compaction of sand-an elasto-plastic description[C]// 12Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Singapore: World Scientific Publishing Company, 2004: 1157-1195.
|
[5] |
ZHANG F, YE B, NODA T, et al. Explanation of cyclic mobility of soils: approach by stress-induced anisotropy[J]. Soils and Foundations, 2007, 47(4): 635-648. doi: 10.3208/sandf.47.635
|
[6] |
NAKAI T R. An isotropic hardening elastoplastic model for sand considering the stress path dependency in three-dimensional stresses[J]. Soils and Foundations, 1989, 29(1): 119-137. doi: 10.3208/sandf1972.29.119
|
[7] |
WOOD D M, BELKHEIR K. Strain softening and state parameter for sand modelling[J]. Géotechnique, 1994, 44(2): 335-339. doi: 10.1680/geot.1994.44.2.335
|
[8] |
BOLTON M D. The strength and dilatancy of sands[J]. Géotechnique, 1986, 36(1): 65-78. doi: 10.1680/geot.1986.36.1.65
|
[9] |
ISHIHARA K. Liquefaction and flow failure during earthquakes[J]. Géotechnique, 1993, 43(3): 351-451. doi: 10.1680/geot.1993.43.3.351
|
[10] |
姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002
YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
|
[11] |
姚仰平, 张民生, 万征, 等. 基于临界状态的砂土本构模型研究[J]. 力学学报, 2018, 50(3): 589-598. https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803015.htm
YAO Yangping, ZHANG Minsheng, WAN Zheng, et al. Constitutive model for sand based on the critical state[J]. Chinese Journal of Theoretical and Applied Mechanics, 2018, 50(3): 589-598. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-LXXB201803015.htm
|
[12] |
LI X S, DAFALIAS Y F. Dilatancy for cohesionless soils[J]. Géotechnique, 2000, 50(4): 449-460. doi: 10.1680/geot.2000.50.4.449
|
[13] |
YANG J, LI X S. State-dependent strength of sands from the perspective of unified modeling[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130(2): 186-198. doi: 10.1061/(ASCE)1090-0241(2004)130:2(186)
|
[14] |
张卫华, 赵成刚, 傅方. 基于相变状态的砂土本构模型的研究[J]. 工程地质学报, 2013, 21(3): 337-344. doi: 10.3969/j.issn.1004-9665.2013.03.001
ZHANG Weihua, ZHAO Chenggang, FU Fang. Phase transformation state based constitutive model for sands[J]. Journal of Engineering Geology, 2013, 21(3): 337-344. (in Chinese) doi: 10.3969/j.issn.1004-9665.2013.03.001
|
[15] |
迟明杰, 赵成刚, 李小军. 剪胀性砂土本构模型的研究[J]. 岩土力学, 2008, 29(11): 2939-2944. doi: 10.16285/j.rsm.2008.11.021
CHI Mingjie, ZHAO Chenggang, LI Xiaojun. Research on constitutive model for dilatant sand[J]. Rock and Soil Mechanics, 2008, 29(11): 2939-2944. (in Chinese) doi: 10.16285/j.rsm.2008.11.021
|
[16] |
SUN Y F, NIMBALKAR S. Stress-fractional soil model with reduced elastic region[J]. Soils and Foundations, 2019, 59(6): 2007-2023. doi: 10.1016/j.sandf.2019.10.001
|
[17] |
李海潮, 童晨曦, 马博, 等. 基于双参数屈服函数的黏土和砂土非正交单屈服面模型[J]. 岩石力学与工程学报, 2020, 39(11): 2319-2327. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm
LI Haichao, TONG Chenxi, MA Bo, et al. A non-orthogonal single yield surface model for clays and sands based on a two-parameter yield function[J]. Chinese Journal of Rock Mechanics and Engineering, 2020, 39(11): 2319-2327. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202011015.htm
|
[18] |
李海潮, 马博, 张升. 适用于堆石料的分数阶下加载面模型[J]. 岩土力学, 2021, 42(1): 68-76. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101008.htm
LI Haichao, MA Bo, ZHANG Sheng. A fractional sub-loading surface model for rockfill[J]. Rock and Soil Mechanics, 2021, 42(1): 68-76. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101008.htm
|
[19] |
LADE P V, NELSON R B, ITO Y M. Nonassociated flow and stability of granular materials[J]. Journal of Engineering Mechanics, 1987, 113(9): 1302-1318. doi: 10.1061/(ASCE)0733-9399(1987)113:9(1302)
|
[20] |
WAN R, PINHEIRO M. On the validity of the flow rule postulate for geomaterials[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2014, 38(8): 863-880. doi: 10.1002/nag.2242
|
[21] |
LU D C, LIANG J Y, DU X L, et al. Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule[J]. Computers and Geotechnics, 2019, 105: 277-290. doi: 10.1016/j.compgeo.2018.10.004
|
[22] |
QU P F, ZHU Q Z. A novel fractional plastic damage model for quasi-brittle materials[J]. Acta Mechanica Solida Sinica, 2021, 34(5): 706-717. doi: 10.1007/s10338-021-00240-0
|
[23] |
ZHOU F X, WANG L Y, LIU H B. A fractional elasto-viscoplastic model for describing creep behavior of soft soil[J]. Acta Geotechnica, 2021, 16(1): 67-76. doi: 10.1007/s11440-020-01008-5
|
[24] |
LU D C, ZHOU X, DU X L, et al. A 3D fractional elastoplastic constitutive model for concrete material[J]. International Journal of Solids and Structures, 2019, 165: 160-175. doi: 10.1016/j.ijsolstr.2019.02.004
|
[25] |
LIANG J Y, LU D C, DU X L, et al. A 3D non-orthogonal elastoplastic constitutive model for transversely isotropic soil[J]. Acta Geotechnica, 2022, 17(1): 19-36.
|
[26] |
LADE P, BOPP P A. Relative density effects on drained sand behavior at high pressures[J]. Soils and Foundations, 2005, 45(1): 1-13.
|
[27] |
YAO Y P, SUN D A, MATSUOKA H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path[J]. Computers and Geotechnics, 2008, 35(2): 210-222.
|
[28] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343.
|
[29] |
ROSCOE K H, BURLAND J B. On the generalised stress-strain behaviour of 'wet' clay[J]. Engineering Plasticity. 1968: 535-609.
|
[30] |
LIANG J Y, LU D C, ZHOU X, et al. Non-orthogonal elastoplastic constitutive model with the critical state for clay[J]. Computers and Geotechnics, 2019, 116: 103200.
|