• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
LIU Xianwei, CHEN Su, LI Xiaojun, FU Lei, HU Jinjun, SUN Hao. Characteristics of marine site based on HVSR dynamic clustering method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 213-220. DOI: 10.11779/CJGE20211449
Citation: LIU Xianwei, CHEN Su, LI Xiaojun, FU Lei, HU Jinjun, SUN Hao. Characteristics of marine site based on HVSR dynamic clustering method[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 213-220. DOI: 10.11779/CJGE20211449

Characteristics of marine site based on HVSR dynamic clustering method

More Information
  • Received Date: December 16, 2021
  • Available Online: February 03, 2023
  • The engineering characteristics of marine site are the important basis for the design, construction, operation and maintenance of major marine projects and the research focus of geotechnical earthquake engineering. The strong ground motion records of 6 seabed stations in Sagami Bay, Japan from 2000 to 2018 are collected, after screening and pre-processing, the horizontal-to-vertical spectral ratio (HVSR) method is used to calculate the Fourier amplitude spectrum ratio of each record. The optimal site characteristics of Sagami Bay are obtained through the dynamic clustering learning combined with the optimal classification. The results show that the dynamic clustering learning method has strong performance and robustness for time series data, and can meet the local and global resolutions. The site of Sagami Bay can be macroscopically divided into submarine canyon area and basin area. The dominant period of the canyon area is significantly smaller than that of the basin area, and the high frequency attenuation is relatively slow. The engineering characteristics of marine site are given by the topographic slope of the local site. The relevant research results may provide reference for simulation of sea ground motion and construction of marine projects.
  • [1]
    李小军, 李娜, 陈苏. 中国海域地震区划及关键问题研究[J]. 震灾防御技术, 2021, 16(1): 1-10. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101001.htm

    LI Xiaojun, LI Na, CHEN Su. Study on seismic zoning in China Sea area and its key issues[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 1-10. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101001.htm
    [2]
    陈苏, 周越, 李小军, 等. 近海域地震动的时频特征与工程特性[J]. 振动与冲击, 2018, 37(16): 227-233. https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201816033.htm

    CHEN Su, ZHOU Yue, LI Xiaojun, et al. Time-frequency and engineering characteristics on offshore ground motion[J]. Journal of Vibration and Shock, 2018, 37(16): 227-233. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZDCJ201816033.htm
    [3]
    胡进军, 刁红旗, 谢礼立. 海底强地震动观测及其特征的研究进展[J]. 地震工程与工程振动, 2013, 33(6): 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201306001.htm

    HU Jinjun, DIAO Hongqi, XIE Lili. Review of observation and characteristics of seafloor strong motion[J]. Journal of Earthquake Engineering and Engineering Vibration, 2013, 33(6): 1-8. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DGGC201306001.htm
    [4]
    NAKAMURA Y. Method for dynamic characteristics estimation of subsurface using microtremor on the ground surface[J]. Quarterly Report of RTRI (Railway Technical Research Institute) (Japan), 1989, 30(1): 25-33.
    [5]
    BOORE D M, SMITH C E. Analysis of earthquake recordings obtained from the Seafloor Earthquake Measurement System (SEMS) instruments deployed off the coast of southern California[J]. Bulletin of the Seismological Society of America, 1999, 89(1): 260-274. doi: 10.1785/BSSA0890010260
    [6]
    FIELD E H, JOHNSON P A, BERESNEV I A, et al. Nonlinear ground-motion amplification by sediments during the 1994 Northridge earthquake[J]. Nature, 1997, 390(6660): 599-602. doi: 10.1038/37586
    [7]
    BONILLA L F. Borehole response studies at the garner valley downhole array, southern California[J]. Bulletin of the Seismological Society of America, 2002, 92(8): 3165-3179. doi: 10.1785/0120010235
    [8]
    WEN K L, CHANG T M, LIN C M, et al. Identification of nonlinear site response using the H/V spectral ratio method[J]. Terrestrial, Atmospheric and Oceanic Sciences, 2006, 17(3): 533. doi: 10.3319/TAO.2006.17.3.533(T)
    [9]
    任叶飞, 温瑞智, 山中浩明, 等. 运用广义反演法研究汶川地震场地效应[J]. 土木工程学报, 2013, 46(增刊2): 146-151. https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2013S2025.htm

    REN Yefei, WEN Ruizhi, YAMANAKA H, et al. Research on site effect of Wenchuan Earthquake by using generalized inversion technique[J]. China Civil Engineering Journal, 2013, 46(S2): 146-151. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TMGC2013S2025.htm
    [10]
    荣棉水, 李小军, 王振明, 等. HVSR方法用于地震作用下场地效应分析的适用性研究[J]. 地球物理学报, 2016, 59(8): 2878-2891. https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608014.htm

    RONG Mianshui, LI Xiaojun, WANG Zhenming, et al. Applicability of HVSR in analysis of site-effects caused by earthquakes[J]. Chinese Journal of Geophysics, 2016, 59(8): 2878-2891. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DQWX201608014.htm
    [11]
    REN Y F, WEN R Z, YAO X X, et al. Five parameters for the evaluation of the soil nonlinearity during the Ms8.0 Wenchuan Earthquake using the HVSR method[J]. Earth, Planets and Space, 2017, 69(1): 1-17. doi: 10.1186/s40623-016-0587-x
    [12]
    DHAKAL Y P, AOI S, KUNUGI T, et al. Assessment of nonlinear site response at ocean bottom seismograph sites based on S-wave horizontal-to-vertical spectral ratios: a study at the Sagami Bay area K-NET sites in Japan[J]. Earth, Planets and Space, 2017, 69(1): 1-7. doi: 10.1186/s40623-016-0587-x
    [13]
    KUBO H, NAKAMURA T, SUZUKI W, et al. Ground‐motion characteristics and nonlinear soil response observed by DONET1 seafloor observation network during the 2016 southeast off‐Mie, Japan, earthquake[J]. Bulletin of the Seismological Society of America, 2019, 109(3): 976-986.
    [14]
    JI K, WEN R, REN Y, et al Nonlinear seismic site response classification using K-means clustering algorithm: case study of the September 6, 2018 Mw6.6 Hokkaido Iburi-Tobu earthquake, Japan[J]. Soil Dynamics and Earthquake Engineering, 2020, 128: 105907.
    [15]
    YAGHMAEI-SABEGH S, RUPAKHETY R. A new method of seismic site classification using HVSR curves: a case study of the 12 November 2017 Mw 7.3 Ezgeleh earthquake in Iran[J]. Engineering Geology, 2020, 270: 105574.
    [16]
    周旭彤, 胡进军, 谭景阳, 等. 基于HVSR的DONET1海底地震动场地效应研究[J]. 震灾防御技术, 2021, 16(1): 105-115. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101011.htm

    ZHOU Xutong, HU Jinjun, TAN Jingyang, et al. The study of site effect of DONET1 offshore ground motions based on HVSR[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 105-115. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101011.htm
    [17]
    赵纪东. 中国台湾将建设首座海底地震台站[J]. 地球科学进展, 2010, 25(2): 146. https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201002005.htm

    ZHAO Jidong. China will build the first submarine seismic station[J]. Advances in Earth Science, 2010, 25(2): 146. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-DXJZ201002005.htm
    [18]
    EGUCHI T, FUJINAWA Y, FUJITA E, et al. A real-time observation network of ocean-bottom-seismometers deployed at the Sagami trough subduction zone, central Japan[J]. Marine Geophysical Researches, 1998, 20(2): 73-94.
    [19]
    BOORE D M, BOMMER J J. Processing of strong-motion accelerograms: needs, options and consequences[J]. Soil Dynamics and Earthquake Engineering, 2005, 25(2): 93-115.
    [20]
    李小军, 李娜, 王巨科, 等. 场地地震动水平/竖向谱比与地表/基底谱比差异及修正水平/竖向谱比法研究[J]. 震灾防御技术, 2021, 16(1): 81-90. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101009.htm

    LI Xiaojun, LI Na, WANG Juke, et al. Difference between horizontal-to-vertical spectral ratio and surface-to-bedrock spectral ratio of strong-motion and modified horizontal-to-vertical spectral ratio method[J]. Technology for Earthquake Disaster Prevention, 2021, 16(1): 81-90. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY202101009.htm
    [21]
    姚鑫鑫, 任叶飞, 温瑞智, 等. 强震动记录H/V谱比法计算处理的若干关键环节[J]. 震灾防御技术, 2019, 14(4): 719-730. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201904003.htm

    YAO Xinxin, REN Yefei, WEN Ruizhi, et al. Some technical notes on the data processing of the spectral ratio based on the strong-motion records[J]. Technology for Earthquake Disaster Prevention, 2019, 14(4): 719-730. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-ZZFY201904003.htm
    [22]
    ARIAS A. Measure of Earthquake Intensity[R]. Massachusetts: Massachusetts Inst of Tech, 970.
    [23]
    KONNO K, OHMACHI T. Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor[J]. Bulletin of the Seismological Society of America, 1998, 88(1): 228-241.
    [24]
    ZHANG R Y, HAJJAR J, SUN H. Machine learning approach for sequence clustering with applications to ground-motion selection[J]. Journal of Engineering Mechanics, 2020, 146(6): 04020040.
    [25]
    FRANK M, WOLFE P. An algorithm for quadratic programming[J]. Naval Research Logistics Quarterly, 1956, 3(1/2): 95-110.
    [26]
    建筑抗震设计规范: GB50011—2010 [S]. 北京: 中国建筑工业出版社, 2010.

    Code for Seismic Design of Buildings: GB50011—2010[M]. Beijing: China Architecture & Building Press, 2010. (in Chinese).
    [27]
    CHIOU B, DARRAGH R, GREGOR N, et al. NGA project strong-motion database[J]. Earthquake Spectra, 2008, 24(1): 23-44.
    [28]
    KODINARIYA T, MAKWANA P R. Review on determining number of Cluster in K-Means Clustering[J]. International Journal, 2013, 1(6): 90-95.
    [29]
    EGUCHI T, FUJINAWA Y, FUJITA E, et al. A real-time observation network of ocean-bottom-seismometers deployed at the Sagami trough subduction zone, central Japan[J]. Marine Geophysical Researches, 1998, 20(2): 73-94.
    [30]
    UTASHIRO S, IWABUCHI Y. The submarine topography and geological structure of Sagami Bay, south coast of Honshu, Japan[J]. Journal of Geography (Chigaku Zasshi), 1971, 80(2): 77-88.
  • Other Related Supplements

  • Cited by

    Periodical cited type(2)

    1. 王时,王想,胡磊,周旭彤. 基于谱比法的近海地震动S-net台站场地分类研究. 振动与冲击. 2025(01): 90-101 .
    2. 胡晓虎,陈苏,金立国,傅磊,王苏阳,刘献伟. 基于时序卷积神经网络的场地地震效应模拟. 地震学报. 2024(05): 893-905 .

    Other cited types(2)

Catalog

    Article views (205) PDF downloads (72) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return