• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XUE Song, YANG Zhibing, CHEN Yifeng, TONG Fuguo. Effects of fracture apertures on droplet splitting through unsaturated fracture intersections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415
Citation: XUE Song, YANG Zhibing, CHEN Yifeng, TONG Fuguo. Effects of fracture apertures on droplet splitting through unsaturated fracture intersections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415

Effects of fracture apertures on droplet splitting through unsaturated fracture intersections

More Information
  • Received Date: November 29, 2021
  • Available Online: February 03, 2023
  • Published Date: November 29, 2021
  • An in-depth understanding of liquid flows through fracture intersections is important for predicting the seepage characteristics of fracture networks. The flow behavior of liquid at unsaturated intersections is closely related to the flow mode and geometric characteristics of fractures. A modeling study is given on the physical process of droplet splitting through unsaturated fracture intersections, which usually occurs under low flow rate and low saturation conditions. The effects of fracture apertures on droplet splitting behaviors are systematically investigated by varying the main channel width w1 and the branch width w2 of the fracture intersection. It is found that there are two droplet splitting patterns related to the droplet length: the flows dominated by the main channel and those dominated by the branch, which can be distinguished by the critical droplet length. This critical length is controlled by capillary force and permeability of channels, both varying with the channel widths. When the two controlling factors have opposite effects on the droplet splitting, the critical droplet length changes non-monotonously with w2. Conversely, the critical droplet length changes monotonously with w1. In addition, there is an optimal range for the width ratio w2/w1 to maximize the critical droplet length. This study provides theoretical support for predicting the seepage structure of fractured rocks under the conditions of low flow and low saturation.
  • [1]
    SHIGORINA E, RÜDIGER F, TARTAKOVSKY A M, et al. Multiscale smoothed particle hydrodynamics model development for simulating preferential flow dynamics in fractured porous media[J]. Water Resources Research, 2021, 57(3): e2020WR027323.
    [2]
    KEIM D M, WEST L J, ODLING N E. Convergent flow in unsaturated fractured chalk[J]. Vadose Zone Journal, 2012, 11(4): vzj2011.0146. doi: 10.2136/vzj2011.0146
    [3]
    李馨馨, 徐轶. 裂隙岩体渗流溶质运移耦合离散裂隙模型数值计算方法[J]. 岩土工程学报, 2019, 41(6): 1164-1171. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml

    LI Xinxin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml
    [4]
    王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015

    WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
    [5]
    谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(增刊1): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm

    XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm
    [6]
    袁俊平, 蔺彦玲, 丁鹏, 等. 裂隙诱导各向异性对边坡降雨入渗的影响[J]. 岩土工程学报, 2016, 38(1): 76-82. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml

    YUAN Junping, LIN Yanling, DING Peng, et al. Influence of anisotropy induced by fissures on rainfall infiltration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 76-82. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml
    [7]
    井文君, 杨春和, 陈锋. 基于事故统计分析的盐岩地下油/气储库风险评价[J]. 岩土力学, 2011, 32(6): 1787-1793. doi: 10.3969/j.issn.1000-7598.2011.06.031

    JING Wenjun, YANG Chunhe, CHEN Feng. Risk assessment of salt cavern oil/gas storage based on accident statistical analysis[J]. Rock and Soil Mechanics, 2011, 32(6): 1787-1793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.031
    [8]
    LAVIOLETTE R A. Self organized spatio-temporal structure within the fractured Vadose Zone: the influence of dynamic overloading at fracture intersections[J]. Geophysical Research Letters, 2004, 31(18): L18501. doi: 10.1029/2004GL020659
    [9]
    GLASS R J, NICHOLL M J, RAJARAM H, et al. Unsaturated flow through fracture networks: evolution of liquid phase structure, dynamics, and the critical importance of fracture intersections[J]. Water Resources Research, 2003, 39(12): 1352.
    [10]
    XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446. doi: 10.1016/j.compgeo.2020.103446
    [11]
    倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特性研究[J]. 岩石力学与工程学报, 2012, 31(3): 488-498. doi: 10.3969/j.issn.1000-6915.2012.03.007

    NI Shaohu, HE Shihai, WANG Xiaogang, et al. Hydraulic properties of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 488-498. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.03.007
    [12]
    刘日成, 李博, 蒋宇静, 等. 三维交叉裂隙渗流特性的实验和数值模拟研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3813-3821. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm

    LIU Richeng, LI Bo, JIANG Yujing, et al. Experimental and numerical study of hydraulic properties of 3D crossed fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3813-3821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm
    [13]
    桑盛, 刘卫群, 宋良, 等. 岩体交叉裂隙水流分配特性研究[J]. 实验力学, 2016, 31(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm

    SANG Sheng, LIU Weiqun, SONG Liang, et al. On the flow distribution characteristics of cross cracks in rock mass[J]. Journal of Experimental Mechanics, 2016, 31(5): 577-583. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm
    [14]
    DRAGILA M I, WEISBROD N. Flow in menisci corners of capillary rivulets[J]. Vadose Zone Journal, 2004, 3(4): 1439-1442. doi: 10.2136/vzj2004.1439
    [15]
    OR D, GHEZZEHEI T A. Traveling liquid bridges in unsaturated fractured porous media[J]. Transport in Porous Media, 2007, 68(1): 129-151. doi: 10.1007/s11242-006-9060-9
    [16]
    KORDILLA J, DENTZ M, TARTAKOVSKY A M. Numerical and analytical modeling of flow partitioning in partially saturated fracture networks[J]. Water Resources Research, 2021, 57(4): e2020WR028775.
    [17]
    JI S H, NICHOLL M J, GLASS R J, et al. Influence of simple fracture intersections with differing aperture on density-driven immiscible flow: Wetting versus nonwetting flows[J]. Water Resources Research, 2006, 42(10): W10416.
    [18]
    KORDILLA J, TARTAKOVSKY A M, GEYER T. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces[J]. Advances in Water Resources, 2013, 59: 1-14. doi: 10.1016/j.advwatres.2013.04.009
    [19]
    王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml

    WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml
    [20]
    JONES B R, BROUWERS L B, DIPPENAAR M A. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies[J]. Hydrogeology Journal, 2018, 26(3): 945-961. doi: 10.1007/s10040-017-1680-3
    [21]
    KORDILLA J, NOFFZ T, DENTZ M, et al. Effect of unsaturated flow modes on partitioning dynamics of gravity-driven flow at a simple fracture intersection: laboratory study and three-dimensional smoothed particle hydrodynamics simulations[J]. Water Resources Research, 2017, 53(11): 9496-9518. doi: 10.1002/2016WR020236
    [22]
    YANG Z B, XUE S, ZHENG X K, et al. Partitioning dynamics of gravity-driven unsaturated flow through simple T-shaped fracture intersections[J]. Water Resources Research, 2019, 55(8): 7130-7142. doi: 10.1029/2018WR024349
    [23]
    XUE S, YANG Z B, HU R, et al. Splitting dynamics of liquid slugs at a T‐junction[J]. Water Resources Research, 2020, 56(8): e2020WR027730.
    [24]
    薛松, 杨志兵, 李东奇, 等. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm

    XUE Song, YANG Zhibing, LI Dongqi, et al. Splitting mechanisms of droplets through unsaturated fracture intersections[J]. Rock and Soil Mechanics, 2021, 42(1): 59-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm
    [25]
    VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1976, 11(5): 714-721.
    [26]
    GHEZZEHEI T A, OR D. Liquid fragmentation and intermittent flow regimes in unsaturated fractured media[J]. Water Resources Research, 2005, 41(12): W12406.
    [27]
    SU G W, GELLER J T, HUNT J R, et al. Small-scale features of gravity-driven flow in unsaturated fractures[J]. Vadose Zone Journal, 2004, 3(2): 592-601.
    [28]
    DRAGILA M I, WEISBROD N. Parameters affecting maximum fluid transport in large aperture fractures[J]. Advances in Water Resources, 2003, 26(12): 1219-1228.
  • Other Related Supplements

Catalog

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return