Citation: | XUE Song, YANG Zhibing, CHEN Yifeng, TONG Fuguo. Effects of fracture apertures on droplet splitting through unsaturated fracture intersections[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 181-188. DOI: 10.11779/CJGE20211415 |
[1] |
SHIGORINA E, RÜDIGER F, TARTAKOVSKY A M, et al. Multiscale smoothed particle hydrodynamics model development for simulating preferential flow dynamics in fractured porous media[J]. Water Resources Research, 2021, 57(3): e2020WR027323.
|
[2] |
KEIM D M, WEST L J, ODLING N E. Convergent flow in unsaturated fractured chalk[J]. Vadose Zone Journal, 2012, 11(4): vzj2011.0146. doi: 10.2136/vzj2011.0146
|
[3] |
李馨馨, 徐轶. 裂隙岩体渗流溶质运移耦合离散裂隙模型数值计算方法[J]. 岩土工程学报, 2019, 41(6): 1164-1171. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml
LI Xinxin, XU Yi. Hydraulic and solute transport coupling model for fractured rock mass with discrete fracture network using computational method[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(6): 1164-1171. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract17803.shtml
|
[4] |
王驹, 陈伟明, 苏锐, 等. 高放废物地质处置及其若干关键科学问题[J]. 岩石力学与工程学报, 2006, 25(4): 801-812. doi: 10.3321/j.issn:1000-6915.2006.04.015
WANG Ju, CHEN Weiming, SU Rui, et al. Geological disposal of high-level radioactive waste and its key scientific issues[J]. Chinese Journal of Rock Mechanics and Engineering, 2006, 25(4): 801-812. (in Chinese) doi: 10.3321/j.issn:1000-6915.2006.04.015
|
[5] |
谢健, 魏宁, 吴礼舟, 等. CO2地质封存泄漏研究进展[J]. 岩土力学, 2017, 38(增刊1): 181-188. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm
XIE Jian, WEI Ning, WU Lizhou, et al. Progress in leakage study of geological CO2 storage[J]. Rock and Soil Mechanics, 2017, 38(S1): 181-188. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX2017S1026.htm
|
[6] |
袁俊平, 蔺彦玲, 丁鹏, 等. 裂隙诱导各向异性对边坡降雨入渗的影响[J]. 岩土工程学报, 2016, 38(1): 76-82. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml
YUAN Junping, LIN Yanling, DING Peng, et al. Influence of anisotropy induced by fissures on rainfall infiltration of slopes[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 76-82. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16419.shtml
|
[7] |
井文君, 杨春和, 陈锋. 基于事故统计分析的盐岩地下油/气储库风险评价[J]. 岩土力学, 2011, 32(6): 1787-1793. doi: 10.3969/j.issn.1000-7598.2011.06.031
JING Wenjun, YANG Chunhe, CHEN Feng. Risk assessment of salt cavern oil/gas storage based on accident statistical analysis[J]. Rock and Soil Mechanics, 2011, 32(6): 1787-1793. (in Chinese) doi: 10.3969/j.issn.1000-7598.2011.06.031
|
[8] |
LAVIOLETTE R A. Self organized spatio-temporal structure within the fractured Vadose Zone: the influence of dynamic overloading at fracture intersections[J]. Geophysical Research Letters, 2004, 31(18): L18501. doi: 10.1029/2004GL020659
|
[9] |
GLASS R J, NICHOLL M J, RAJARAM H, et al. Unsaturated flow through fracture networks: evolution of liquid phase structure, dynamics, and the critical importance of fracture intersections[J]. Water Resources Research, 2003, 39(12): 1352.
|
[10] |
XIONG F, WEI W, XU C S, et al. Experimental and numerical investigation on nonlinear flow behaviour through three dimensional fracture intersections and fracture networks[J]. Computers and Geotechnics, 2020, 121: 103446. doi: 10.1016/j.compgeo.2020.103446
|
[11] |
倪绍虎, 何世海, 汪小刚, 等. 裂隙岩体水力学特性研究[J]. 岩石力学与工程学报, 2012, 31(3): 488-498. doi: 10.3969/j.issn.1000-6915.2012.03.007
NI Shaohu, HE Shihai, WANG Xiaogang, et al. Hydraulic properties of fractured rock mass[J]. Chinese Journal of Rock Mechanics and Engineering, 2012, 31(3): 488-498. (in Chinese) doi: 10.3969/j.issn.1000-6915.2012.03.007
|
[12] |
刘日成, 李博, 蒋宇静, 等. 三维交叉裂隙渗流特性的实验和数值模拟研究[J]. 岩石力学与工程学报, 2016, 35(S2): 3813-3821. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm
LIU Richeng, LI Bo, JIANG Yujing, et al. Experimental and numerical study of hydraulic properties of 3D crossed fractures[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(S2): 3813-3821. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX2016S2041.htm
|
[13] |
桑盛, 刘卫群, 宋良, 等. 岩体交叉裂隙水流分配特性研究[J]. 实验力学, 2016, 31(5): 577-583. https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm
SANG Sheng, LIU Weiqun, SONG Liang, et al. On the flow distribution characteristics of cross cracks in rock mass[J]. Journal of Experimental Mechanics, 2016, 31(5): 577-583. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-SYLX201605001.htm
|
[14] |
DRAGILA M I, WEISBROD N. Flow in menisci corners of capillary rivulets[J]. Vadose Zone Journal, 2004, 3(4): 1439-1442. doi: 10.2136/vzj2004.1439
|
[15] |
OR D, GHEZZEHEI T A. Traveling liquid bridges in unsaturated fractured porous media[J]. Transport in Porous Media, 2007, 68(1): 129-151. doi: 10.1007/s11242-006-9060-9
|
[16] |
KORDILLA J, DENTZ M, TARTAKOVSKY A M. Numerical and analytical modeling of flow partitioning in partially saturated fracture networks[J]. Water Resources Research, 2021, 57(4): e2020WR028775.
|
[17] |
JI S H, NICHOLL M J, GLASS R J, et al. Influence of simple fracture intersections with differing aperture on density-driven immiscible flow: Wetting versus nonwetting flows[J]. Water Resources Research, 2006, 42(10): W10416.
|
[18] |
KORDILLA J, TARTAKOVSKY A M, GEYER T. A smoothed particle hydrodynamics model for droplet and film flow on smooth and rough fracture surfaces[J]. Advances in Water Resources, 2013, 59: 1-14. doi: 10.1016/j.advwatres.2013.04.009
|
[19] |
王志良, 申林方, 徐则民, 等. 岩体裂隙面粗糙度对其渗流特性的影响研究[J]. 岩土工程学报, 2016, 38(7): 1262-1268. http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml
WANG Zhiliang, SHEN Linfang, XU Zemin, et al. Influence of roughness of rock fracture on seepage characteristics[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(7): 1262-1268. (in Chinese) http://manu31.magtech.com.cn/Jwk_ytgcxb/CN/abstract/abstract16612.shtml
|
[20] |
JONES B R, BROUWERS L B, DIPPENAAR M A. Partially to fully saturated flow through smooth, clean, open fractures: qualitative experimental studies[J]. Hydrogeology Journal, 2018, 26(3): 945-961. doi: 10.1007/s10040-017-1680-3
|
[21] |
KORDILLA J, NOFFZ T, DENTZ M, et al. Effect of unsaturated flow modes on partitioning dynamics of gravity-driven flow at a simple fracture intersection: laboratory study and three-dimensional smoothed particle hydrodynamics simulations[J]. Water Resources Research, 2017, 53(11): 9496-9518. doi: 10.1002/2016WR020236
|
[22] |
YANG Z B, XUE S, ZHENG X K, et al. Partitioning dynamics of gravity-driven unsaturated flow through simple T-shaped fracture intersections[J]. Water Resources Research, 2019, 55(8): 7130-7142. doi: 10.1029/2018WR024349
|
[23] |
XUE S, YANG Z B, HU R, et al. Splitting dynamics of liquid slugs at a T‐junction[J]. Water Resources Research, 2020, 56(8): e2020WR027730.
|
[24] |
薛松, 杨志兵, 李东奇, 等. 滴状流条件下非饱和交叉裂隙分流机制研究[J]. 岩土力学, 2021, 42(1): 59-67. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm
XUE Song, YANG Zhibing, LI Dongqi, et al. Splitting mechanisms of droplets through unsaturated fracture intersections[J]. Rock and Soil Mechanics, 2021, 42(1): 59-67. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202101007.htm
|
[25] |
VOINOV O V. Hydrodynamics of wetting[J]. Fluid Dynamics, 1976, 11(5): 714-721.
|
[26] |
GHEZZEHEI T A, OR D. Liquid fragmentation and intermittent flow regimes in unsaturated fractured media[J]. Water Resources Research, 2005, 41(12): W12406.
|
[27] |
SU G W, GELLER J T, HUNT J R, et al. Small-scale features of gravity-driven flow in unsaturated fractures[J]. Vadose Zone Journal, 2004, 3(2): 592-601.
|
[28] |
DRAGILA M I, WEISBROD N. Parameters affecting maximum fluid transport in large aperture fractures[J]. Advances in Water Resources, 2003, 26(12): 1219-1228.
|