• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
FENG Yasong, GU Jianqiang, DU Yanjun, LI Jiangshan, ZHOU Shiji, GAO Jingxun, LEI Shangwu, WANG Shui. Effects of in-situ jet grouting-aided chemical oxidation on geotechnical properties of petroleum hydrocarbon-contaminated silty clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 153-161. DOI: 10.11779/CJGE20211397
Citation: FENG Yasong, GU Jianqiang, DU Yanjun, LI Jiangshan, ZHOU Shiji, GAO Jingxun, LEI Shangwu, WANG Shui. Effects of in-situ jet grouting-aided chemical oxidation on geotechnical properties of petroleum hydrocarbon-contaminated silty clay[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 153-161. DOI: 10.11779/CJGE20211397

Effects of in-situ jet grouting-aided chemical oxidation on geotechnical properties of petroleum hydrocarbon-contaminated silty clay

More Information
  • Received Date: November 23, 2021
  • Available Online: February 03, 2023
  • Published Date: November 23, 2021
  • The chemical oxidation is a widely used remediation technology for petroleum hydrocarbon-contaminated soils. However, the effects of in-situ chemical oxidation on the geotechnical properties of contaminated soils are unclear. An in-situ jet grouting-aided chemical oxidation test is conducted at a petroleum hydrocarbon-contaminated site located at the lower reaches of the Yangtze River. The effects of petroleum hydrocarbon-contamination and chemical oxidation on the geotechnical properties of the studied silty clay are investigated, and the corresponding degrees of effects (DOEs) of series geotechnical parameters are evaluated as per China GB 50021-2001. The test results show that the DOEs of petroleum hydrocarbon-contamination (720 mg/kg) on the hydraulic conductivity are moderate. The DOEs of sodium hydroxide-activated sodium persulfate addition (3%) on the dry density are moderate, and those on the water content, void ratio, Atterberg limits, compressibility and hydraulic conductivity are significant. The compression indexes and the liquid limits of clean, contaminated, and treated soils exhibit a linear relationship. Furthermore, a positive correlation relationship is observed between the hydraulic conductivity and the void ratio of the clean and contaminated soils on the semilogarithm coordinate.
  • [1]
    中华人们共和国国务院. 长江经济带发展规划纲要[R]. 2016.

    The State Council, The People's Republic of China. Outline of Yangtze River Economic Belt Development Plan[R]. 2016. (in Chinese)
    [2]
    QU C S, WANG S, ENGELUND H P. China: Soil clean-up needs cash and clarity[J]. Nature, 2016, 538(7625): 371.
    [3]
    ZHOU Y, LIU Y S. China's fight against soil pollution[J]. Science, 2018, 362(6412): 298. doi: 10.1126/science.aav4061
    [4]
    HOANG S A, SARKAR B, SESHADRI B, et al. Mitigation of petroleum-hydrocarbon-contaminated hazardous soils using organic amendments: a review[J]. Journal of Hazardous Materials, 2021, 416: 125702. doi: 10.1016/j.jhazmat.2021.125702
    [5]
    QUIGLEY R M, FERNANDEZ F, YANFUL E, et al. Hydraulic conductivity of contaminated natural clay directly below a domestic landfill[J]. Canadian Geotechnical Journal, 1987, 24(3): 377-383. doi: 10.1139/t87-048
    [6]
    NAYAK S, SUNIL B M, SHRIHARI S. Hydraulic and compaction characteristics of leachate-contaminated lateritic soil[J]. Engineering Geology, 2007, 94(3/4): 137-144.
    [7]
    KHAMEHCHIYAN M, HOSSEIN C A, TAJIK M. Effects of crude oil contamination on geotechnical properties of clayey and sandy soils[J]. Engineering Geology, 2007, 89(3/4): 220-229.
    [8]
    XU P P, ZHANG Q Y, QIAN H, et al. Investigating the mechanism of pH effect on saturated permeability of remolded loess[J]. Engineering Geology, 2021, 284: 105978. doi: 10.1016/j.enggeo.2020.105978
    [9]
    DU Y J, JIANG N J, LIU S Y, et al. Engineering properties and microstructural characteristics of cement-stabilized zinc-contaminated Kaolin[J]. Canadian Geotechnical Journal, 2014, 51(3): 289-302. doi: 10.1139/cgj-2013-0177
    [10]
    FURMAN O S, TEEL A L, WATTS R J. Mechanism of base activation of persulfate[J]. Environmental Science & Technology, 2010, 44(16): 6423-6428.
    [11]
    LOMINCHAR M A, SANTOS A, DE MIGUEL E, et al. Remediation of aged diesel contaminated soil by alkaline activated persulfate[J]. Science of the Total Environment, 2018, 622/623: 41-48. doi: 10.1016/j.scitotenv.2017.11.263
    [12]
    LI Y T, ZHANG J J, LI Y H, et al. Treatment of soil contaminated with petroleum hydrocarbons using activated persulfate oxidation, ultrasound, and heat: A kinetic and thermodynamic study[J]. Chemical Engineering Journal, 2021, 428(3/4): 131336.
    [13]
    CHEN Y Z, ZHOU W H, LIU F M, et al. Exploring the effects of nanoscale zero-valent iron (nZVI) on the mechanical properties of lead-contaminated clay[J]. Canadian Geotechnical Journal, 2019, 56(10): 1395-1405. doi: 10.1139/cgj-2018-0387
    [14]
    POLLI F, ZINGARETTI D, CROGNALE S, et al. Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil[J]. Chemosphere, 2018, 191: 580-588. doi: 10.1016/j.chemosphere.2017.10.081
    [15]
    CHEN L W, HU X X, CAI T M, et al. Degradation of Triclosan in soils by thermally activated persulfate under conditions representative of in situ chemical oxidation (ISCO)[J]. Chemical Engineering Journal, 2019, 369: 344-352. doi: 10.1016/j.cej.2019.03.084
    [16]
    高彦斌, 刘佳丹, 王雨滢. 酸碱污染重塑粉质黏土的塑性及其与力学特性的关系[J]. 岩土工程学报, 2018, 40(11): 2103-2109. doi: 10.11779/CJGE201811017

    GAO Yanbin, LIU Jiadan, WANG Yuying. Plasticity and its relationship with mechanical properties of a remolded silty clay contaminated by several acids and bases[J]. Chinese Journal of Geotechnical Engineering, 2018, 40(11): 2103-2109. (in Chinese) doi: 10.11779/CJGE201811017
    [17]
    MITCHELL J K, SOGA K. Fundamentals of soil behavior[M]. 3rd ed. Hoboken, NJ: John Wiley & Sons, 2005.
    [18]
    CHANEY R C, DEMARS K R, SRIDHARAN A, et al. Percussion and cone methods of determining the liquid limit of soils: controlling mechanisms[J]. Geotechnical Testing Journal, 2000, 23(2): 236. doi: 10.1520/GTJ11048J
    [19]
    GAJO A, MAINES M. Mechanical effects of aqueous solutions of inorganic acids and bases on a natural active clay[J]. Géotechnique, 2007, 57(8): 687-699. doi: 10.1680/geot.2007.57.8.687
    [20]
    CROCE P, FLORA A. Analysis of single-fluid jet grouting[J]. Géotechnique, 2000, 50(6): 739-748. doi: 10.1680/geot.2000.50.6.739
    [21]
    CHAI J C, JIA R, HINO T. Anisotropic consolidation behavior of ariake clay from three different CRS tests[J]. Geotechnical Testing Journal, 2012, 35(6): 103848. doi: 10.1520/GTJ103848
    [22]
    TERZAGHI K, PECK R B. Soil mechanics in engineering practice[M]. 2d ed. New York: Wiley, 1967.
    [23]
    AZZOUZ A S, KRIZEK R J, COROTIS R B. Regression analysis of soil compressibility[J]. Soils and Foundations, 1976, 16(2): 19-29. doi: 10.3208/sandf1972.16.2_19
    [24]
    YOON G L, KIM B T, JEON S S. Empirical correlations of compression index for marine clay from regression analysis[J]. Canadian Geotechnical Journal, 2004, 41(6): 1213-1221. doi: 10.1139/t04-057
    [25]
    ZENG L L, HONG Z S, GAO Y F. Practical estimation of compression behaviour of dredged clays with three physical parameters[J]. Engineering Geology, 2017, 217: 102-109. doi: 10.1016/j.enggeo.2016.12.013
    [26]
    CUISINIER O, AURIOL J C, LE BORGNE T, et al. Microstructure and hydraulic conductivity of a compacted lime-treated soil[J]. Engineering Geology, 2011, 123(3): 187-193. doi: 10.1016/j.enggeo.2011.07.010
    [27]
    DENG Y F, YUE X B, LIU S Y, et al. Hydraulic conductivity of cement-stabilized marine clay with metakaolin and its correlation with pore size distribution[J]. Engineering Geology, 2015, 193: 146-152. doi: 10.1016/j.enggeo.2015.04.018
    [28]
    REN X W, SANTAMARINA J C. The hydraulic conductivity of sediments: a pore size perspective[J]. Engineering Geology, 2018, 233: 48-54. doi: 10.1016/j.enggeo.2017.11.022
    [29]
    YANG Y L, REDDY K R, DU Y J, et al. Short-term hydraulic conductivity and consolidation properties of soil-bentonite backfills exposed to CCR-impacted groundwater[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2018, 144(6): 04018025. doi: 10.1061/(ASCE)GT.1943-5606.0001877
    [30]
    ZENG L, CAI Y Q, CUI Y, et al. Hydraulic conductivity of reconstituted clays based on intrinsic compression[J]. Géotechnique, 2020, 70(3): 268–275. doi: 10.1680/jgeot.18.P.096
    [31]
    DENG Y F, LIU L, CUI Y J, et al. Colloid effect on clogging mechanism of hydraulic reclamation mud improved by vacuum preloading[J]. Canadian Geotechnical Journal, 2019, 56(5): 611-620. doi: 10.1139/cgj-2017-0635
    [32]
    INDRARATNA B, REDANA I W. Plane-strain modeling of smear effects associated with vertical drains[J]. Journal of Geotechnical and Geoenvironmental Engineering, 1997, 123(5): 474-478. doi: 10.1061/(ASCE)1090-0241(1997)123:5(474)
    [33]
    XIE P C, GUO Y Z, CHEN Y Q, et al. Application of a novel advanced oxidation process using sulfite and zero-valent iron in treatment of organic pollutants[J]. Chemical Engineering Journal, 2017, 314: 240-248. doi: 10.1016/j.cej.2016.12.094
    [34]
    CHEN Y Q, TONG Y, LIU Z Z, et al. Enhanced degradation of Orange II using a novel UV/persulfate/sulfite system[J]. Environmental Chemistry Letters, 2019, 17(3): 1435-1439. doi: 10.1007/s10311-019-00880-2
  • Cited by

    Periodical cited type(4)

    1. 刘翠翠,唐卫杰,王栋,王水. 煤制气遗留场地修复后再开发安全利用评估. 环境监控与预警. 2024(03): 65-71 .
    2. 李玉萍,樊宝云,董康冉,万金忠,艾英钵,王保田. 不同修复技术对石油烃污染粉质砂土工程特性影响室内试验研究. 岩土力学. 2023(10): 2833-2842 .
    3. 刘研. 高压旋喷注浆法在地基加固中的应用. 四川水泥. 2023(11): 164-166 .
    4. 曾跃春,郭宝蔓,范昌月. 退役化工地块有机污染土壤化学氧化修复实例. 广州化工. 2023(19): 52-54 .

    Other cited types(0)

Catalog

    Article views (232) PDF downloads (68) Cited by(4)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return