Citation: | HU Shenjiang, GUO Ning, YANG Zhongxuan, ZHAO Jidong. Implicit DEM analyses of size and shape effects on crushing strength of rockfill particles[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(2): 433-440. DOI: 10.11779/CJGE20211396 |
[1] |
徐琨, 周伟, 马刚. 颗粒破碎对堆石料填充特性缩尺效应的影响研究[J]. 岩土工程学报, 2020, 42(6): 1013-1022. https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006006.htm
XU Kun, ZHOU Wei, MA Gang. Influence of particle breakage on scale effect of filling characteristics of rockfill material[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(6): 1013-1022. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTGC202006006.htm
|
[2] |
MCDOWELL G R. On the yielding and plastic compression of sand[J]. Soils and Foundations, 2002, 42(1): 139-145. doi: 10.3208/sandf.42.139
|
[3] |
HUANG J, XU S, YI H, et al. Size effect on the compression breakage strengths of glass particles[J]. Powder Technology, 2014, 268: 86-94. doi: 10.1016/j.powtec.2014.08.037
|
[4] |
DE BONO J P, MCDOWELL G R. An insight into the yielding and normal compression of sand with irregularly-shaped particles using DEM[J]. Powder Technology, 2015, 271: 270-277. doi: 10.1016/j.powtec.2014.11.013
|
[5] |
LAUFER I. Grain crushing and high-pressure oedometer tests simulated with the discrete element method[J]. Granular Matter, 2015, 17(3): 389-412. doi: 10.1007/s10035-015-0559-z
|
[6] |
CHENG Y P, NAKATA Y, BOLTON M D. Discrete element simulation of crushable soil[J]. Géotechnique, 2003, 53(7): 633-641. doi: 10.1680/geot.2003.53.7.633
|
[7] |
JEAN M. The non-smooth contact dynamics method[J]. Computer Methods in Applied Mechanics and Engineering, 1999, 177(3/4): 235-257.
|
[8] |
CAMACHO G T, ORTIZ M. Computational modelling of impact damage in brittle materials[J]. International Journal of Solids and Structures, 1996, 33(20/21/22): 2899-2938.
|
[9] |
JIANG H X, MENG D G. 3D numerical modelling of rock fracture with a hybrid finite and cohesive element method[J]. Engineering Fracture Mechanics, 2018, 199: 280-293. doi: 10.1016/j.engfracmech.2018.05.037
|
[10] |
喻勇, 尹健民. 三峡花岗岩在不同加载方式下的能耗特征[J]. 岩石力学与工程学报, 2004, 23(2): 205-208. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402004.htm
YU Yong, YIN Jianmin. Energy dissipation properties of Three Gorges granite under different loading modes[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(2): 205-208. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX200402004.htm
|
[11] |
QUEY R, DAWSON P R, BARBE F. Large-scale 3D random polycrystals for the finite element method: generation, meshing and remeshing[J]. Computer Methods in Applied Mechanics and Engineering, 2011, 200(17/18/19/20): 1729-1745.
|
[12] |
SAADAT M, TAHERI A. A cohesive grain based model to simulate shear behaviour of rock joints with asperity damage in polycrystalline rock[J]. Computers and Geotechnics, 2020, 117: 103254. doi: 10.1016/j.compgeo.2019.103254
|
[13] |
CANTOR D, AZÉMA E, SORNAY P, et al. Three-dimensional bonded-cell model for grain fragmentation[J]. Computational Particle Mechanics, 2017, 4(4): 441-450. doi: 10.1007/s40571-016-0129-0
|
[14] |
周博, 黄润秋, 汪华斌, 等. 基于离散元法的砂土破碎演化规律研究[J]. 岩土力学, 2014, 35(9): 2709-2716. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409039.htm
ZHOU Bo, HUANG Runqiu, WANG Huabin, et al. Study of evolution of sand crushability based on discrete elements method[J]. Rock and Soil Mechanics, 2014, 35(9): 2709-2716. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201409039.htm
|
[15] |
MCDOWELL G R, AMON A. The application of weibull statistics to the fracture of soil particles[J]. Soils and Foundations, 2000, 40(5): 133-141. doi: 10.3208/sandf.40.5_133
|
[16] |
FU R, HU X L, ZHOU B. Discrete element modeling of crushable sands considering realistic particle shape effect[J]. Computers and Geotechnics, 2017, 91: 179-191. doi: 10.1016/j.compgeo.2017.07.016
|
[17] |
HUILLCA Y, SILVA M, OVALLE C, et al. Modelling size effect on rock aggregates strength using a DEM bonded-cell model[J]. Acta Geotechnica, 2021, 16(3): 699-709. doi: 10.1007/s11440-020-01054-z
|
[18] |
MCDOWELL G R. Statistics of soil particle strength[J]. Géotechnique, 2001, 51(10): 897-900. doi: 10.1680/geot.2001.51.10.897
|
[19] |
XIAO Y, MENG M Q, DAOUADJI A, et al. Effects of particle size on crushing and deformation behaviors of rockfill materials[J]. Geoscience Frontiers, 2020, 11(2): 375-388. doi: 10.1016/j.gsf.2018.10.010
|
[20] |
GRIFFITH A A. The phenomena of rupture and flow in solids[J]. Philosophical Transactions of the Royal Society A, 1921, 221: 163–198.
|
[21] |
孙壮壮, 马刚, 周伟, 等. 颗粒形状对堆石颗粒破碎强度尺寸效应的影响[J]. 岩土力学, 2021, 42(2): 430-438. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102015.htm
SUN Zhuangzhuang, MA Gang, ZHOU Wei, et al. Influence of particle shape on size effect of crushing strength of rockfill particles[J]. Rock and Soil Mechanics, 2021, 42(2): 430-438. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX202102015.htm
|
[22] |
ZHU F, ZHAO J D. Interplays between particle shape and particle breakage in confined continuous crushing of granular media[J]. Powder Technology, 2021, 378: 455-467. doi: 10.1016/j.powtec.2020.10.020
|
[23] |
WANG Y H, MA G, MEI J Z, et al. Machine learning reveals the influences of grain morphology on grain crushing strength[J]. Acta Geotechnica, 2021, 16(11): 3617-3630.
|
[24] |
MA G, ZHOU W, REGUEIRO R A, et al. Modeling the fragmentation of rock grains using computed tomography and combined FDEM[J]. Powder Technology, 2017, 308: 388-397.
|
[25] |
ZHU F, ZHAO J D. Multiscale modeling of continuous crushing of granular media: the role of grain microstructure[J]. Computational Particle Mechanics, 2021, 8(5): 1089-1101.
|
[26] |
XIAO Y, DESAI C S, LIU H L. Testing and modeling on particle breakage for granular soils[J]. International Journal of Geomechanics, 2021, 21(11): 02021001. http://www.xueshufan.com/publication/3193815105
|