• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
ZHANG Yu, TAO Lianjin, LIU Jun, ZHAO Xu, GUO Fei, BIAN Jin. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. DOI: 10.11779/CJGE20211349
Citation: ZHANG Yu, TAO Lianjin, LIU Jun, ZHAO Xu, GUO Fei, BIAN Jin. Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(3): 530-540. DOI: 10.11779/CJGE20211349

Method for calculating limit support pressure of face of shield tunnels considering principal stress axis rotation and soil arching effects in dry sand

More Information
  • Received Date: November 13, 2021
  • Available Online: March 15, 2023
  • For the deep-buried shield tunnels in dry cohesionless soils, it is critical to determine the support pressure acting on the tunnel face due to the significant soil arching effects. Based on the limit equilibrium method and the wedge theory, a multi-layer parabolic bearing arch model is proposed. According to the characteristics of failure zone of the tunnel face and the category of soil arch under different buried depths, the tunnel state is divided into shallow buried tunnel, transition tunnel and deep buried tunnel, respectively. By considering the continuity of the principal stress deflection angle and lateral earth pressure coefficient in the multi-layer parabolic bearing arch and assuming the parabolic bearing arch as a three-hinged structural arch with reasonable arch axis, the load transfer expression for the multi-layer parabolic bearing arch is derived in transition zone and deep buried zone respectively, and then the limit support pressure is calculated. By comparing the proposed model with the existing model, model tests and numerical model, the rationality of the limit support pressure and failure zone of the tunnel face obtained by the proposed model is verified. Finally, the influences of the internal friction angle on the boundary between shallow and deep burials and the limit support pressure are discussed through parameter analysis. This study may provide a theoretical basis for predicting the limit support pressure acting on the tunnel face in dry sand.
  • [1]
    张孟喜, 戴治恒, 张晓清, 等. 考虑主应力轴偏转的深埋盾构隧道开挖面主动极限支护压力计算方法[J]. 岩石力学与工程学报, 2021, 40(11): 2366-2376. https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111019.htm

    ZHANG Mengxi, DAI Zhiheng, ZHANG Xiaoqing, et al. A calculation method of active limit support pressure for deep shield tunnels considering principal stress axis rotation[J]. Chinese Journal of Rock Mechanics and Engineering, 2021, 40(11): 2366-2376. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YSLX202111019.htm
    [2]
    汪丁建, 唐辉明, 李长冬, 等. 考虑主应力偏转的土体浅埋隧道支护压力研究[J]. 岩土工程学报, 2016, 38(5): 804-810. doi: 10.11779/CJGE201605005

    WANG Dingjian, TANG Huiming, LI Changdong, et al. Theoretical study on earth pressure on shallow tunnel considering principal stress rotation[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(5): 804-810. (in Chinese) doi: 10.11779/CJGE201605005
    [3]
    徐长节, 梁禄钜, 陈其志, 等. 考虑松动区内应力分布形式的松动土压力研究[J]. 岩土力学, 2018, 39(6): 1927-1934. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm

    XU Changjie, LIANG Luju, CHEN Qizhi, et al. Research on loosening earth pressure considering the patterns of stress distribution in loosening zone[J]. Rock and Soil Mechanics, 2018, 39(6): 1927-1934. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201806002.htm
    [4]
    加瑞. 盾构隧道垂直土压力松动效应的研究[D]. 南京: 河海大学, 2007.

    JIA Rui. Study on Relaxation Effect of Vertical Soil Pressure for Shield Tunnel[D]. Nanjing: Hohai University, 2007. (in Chinese)
    [5]
    HORN N. Horizontal earth pressure on the vertical surfaces of the tunnel tubes[C]//National Conference of the Hungarian Civil Engineering Industry. Budapest, 1961.
    [6]
    ANAGNOSTOU G, KOVÁRI K. Face stability conditions with earth-pressure-balanced shields[J]. Tunnelling and Underground Space Technology, 1996, 11(2): 165-173. doi: 10.1016/0886-7798(96)00017-X
    [7]
    CHEN R P, LI J, KONG L G, et al. Experimental study on face instability of shield tunnel in sand[J]. Tunnelling and Underground Space Technology, 2013, 33: 12-21. doi: 10.1016/j.tust.2012.08.001
    [8]
    CHEN R P, TANG L J, YIN X S, et al. An improved 3D wedge-prism model for the face stability analysis of the shield tunnel in cohesionless soils[J]. Acta Geotechnica, 2015, 10(5): 683-692. doi: 10.1007/s11440-014-0304-5
    [9]
    LAI H J, ZHENG J J, ZHANG R J, et al. Classification and characteristics of soil arching structures in pile-supported embankments[J]. Computers and Geotechnics, 2018, 98: 153-171. doi: 10.1016/j.compgeo.2018.02.007
    [10]
    CHEN R P, LIN X T, WU H N. An analytical model to predict the limit support pressure on a deep shield tunnel face[J]. Computers and Geotechnics, 2019, 115: 103174. doi: 10.1016/j.compgeo.2019.103174
    [11]
    WAN T, LI P F, ZHENG H, et al. An analytical model of loosening earth pressure in front of tunnel face for deep-buried shield tunnels in sand[J]. Computers and Geotechnics, 2019, 115: 103170. doi: 10.1016/j.compgeo.2019.103170
    [12]
    CHAMBON P, CORTÉJ F. Shallow tunnels in cohesionless soil: stability of tunnel face[J]. Journal of Geotechnical Engineering, 1994, 120(7): 1148-1165. doi: 10.1061/(ASCE)0733-9410(1994)120:7(1148)
    [13]
    林星涛. 砂土地层盾构掘进土拱效应及其应用[D]. 长沙: 湖南大学, 2020.

    LIN Xingtao. Soil Arching Effect Induced by Shield Tunneling in Sandy Ground and Its Application[D]. Changsha: Hunan University, 2020. (in Chinese)
    [14]
    张玲, 陈金海, 赵明华. 考虑土拱效应的悬臂式抗滑桩最大桩间距确定[J]. 岩土力学, 2019, 40(11): 4497-4505, 4522. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911041.htm

    ZHANG Ling, CHEN Jinhai, ZHAO Minghua. Maximum cantilever anti-slide piles spacing determination with consideration of soil arching effect[J]. Rock and Soil Mechanics, 2019, 40(11): 4497-4505, 4522. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201911041.htm
    [15]
    陈冲, 王卫, 吕华永. 基于复合抗滑桩模型加固边坡稳定性分析[J]. 岩土力学, 2019, 40(8): 3207-3217. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908038.htm

    CHEN Chong, WANG Wei, LÜ Huayong. Stability analysis of slope reinforcement based on composite anti-slide pile model[J]. Rock and Soil Mechanics, 2019, 40(8): 3207-3217. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX201908038.htm
    [16]
    TERZAGHI K. Theoretical Soil Mechanics[M]. London: Chapman and Hall, limited, 1943.
    [17]
    OBLOZINSKY P, KUWANO J. Centrifuge experiments on stability of tunnel face in sandy ground[J]. Slovak J Civ Eng. 2004, 3: 23-9.
    [18]
    TAKANO D, OTANI J, NAGATANI H, et al. Application of X-ray CT on boundary value problems in geotechnical engineering: research on tunnel face failure[C]//GeoCongress 2006. Atlanta, Georgia, USA. Reston, VA: American Society of Civil Engineers, 2006.
    [19]
    KIRSCH A. Experimental investigation of the face stability of shallow tunnels in sand[J]. Acta Geotechnica, 2010, 5(1): 43-62.
    [20]
    IDINGER G, AKLIK P, WU W, et al. Centrifuge model test on the face stability of shallow tunnel[J]. Acta Geotechnica, 2011, 6(2): 105-117.
    [21]
    LÜX L, ZHOU Y C, HUANG M S, et al. Experimental study of the face stability of shield tunnel in sands under seepage condition[J]. Tunnelling and Underground Space Technology, 2018, 74: 195-205.
    [22]
    汤旅军, 陈仁朋, 尹鑫晟, 等. 密实砂土地层盾构隧道开挖面失稳离心模型试验研究[J]. 岩土工程学报, 2013, 35(10): 1830-1838. http://cge.nhri.cn/cn/article/id/15302

    TANG Lüjun, CHEN Renpeng, YIN Xincheng, et al. Centrifugal model tests on face stability of shield tunnels in dense sand[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(10): 1830-1838. (in Chinese) http://cge.nhri.cn/cn/article/id/15302
    [23]
    SUN X H, MIAO L C, LIN H S, et al. Soil arch effect analysis of shield tunnel in dry sandy ground[J]. International Journal of Geomechanics, 2018, 18(6): 04018057.
    [24]
    武军, 廖少明, 时振昊. 考虑土拱效应的盾构隧道开挖面稳定性[J]. 同济大学学报(自然科学版), 2015, 43(2): 213-220. https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201502009.htm

    WU Jun, LIAO Shaoming, SHI Zhenhao. Workface stability of shield tunnel considering arching effect[J]. Journal of Tongji University(Natural Science), 2015, 43(2): 213-220. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-TJDZ201502009.htm
    [25]
    LI P F, WANG F, ZHANG C P, et al. Face stability analysis of a shallow tunnel in the saturated and multilayered soils in short-term condition[J]. Computers and Geotechnics, 2019, 107: 25-35.
    [26]
    LECA E, DORMIEUX L. Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material[J]. Géotechnique, 1990, 40(4): 581-606.
    [27]
    MOLLON G, DIAS D, SOUBRA A H. Face stability analysis of circular tunnels driven by a pressurized shield[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 136(1): 215-229.
  • Cited by

    Periodical cited type(4)

    1. 李明宇,朱康康,陈健,蔺云宏,吴龙骥,靳军伟,杨潇. 考虑土体剪切与接头剪切效应的盾构隧道纵向变形计算模型. 中国铁道科学. 2024(01): 142-154 .
    2. 秦哲,刘文龙,武发宇,韩继欢,李为腾,冯强,刘永德. 考虑层叠拱传递效应的浅埋硬岩隧道支护力研究及应用. 岩石力学与工程学报. 2024(09): 2165-2177 .
    3. 陈志敏,刘宝莉,陈骏,翟文浩,李文豪,王铎斌,蔡昀辰. 考虑颗粒组成与含水率的冰碛体成拱规律研究. 现代隧道技术. 2024(05): 200-209 .
    4. 陈星欣,何明高,施文城,郭力群. 土岩复合地层盾构地中对接法刀盘拆卸不完全拱压力计算. 岩土工程学报. 2024(12): 2652-2660 . 本站查看

    Other cited types(8)

Catalog

    Article views (302) PDF downloads (93) Cited by(12)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return