Citation: | XIONG Haibin, YU Qian, ZHANG Sheng, TONG Chenxi, LAN Peng, LIU Guangqing. UH model and parameter inversion for crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 134-143. DOI: 10.11779/CJGE20211299 |
[1] |
张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907035.htm
ZHANG Jiaming, JIANG Guosheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907035.htm
|
[2] |
TONG C X, BURTON G J, ZHANG S, et al. Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests[J]. Acta Geotechnica, 2020, 15(9): 2379-2394. doi: 10.1007/s11440-020-00931-x
|
[3] |
TONG C X, ZHAI M Y, LI H C, et al. Particle breakage of granular soils: changing critical state line and constitutive modelling[J]. Acta Geotechnica, 2022, 17(3): 755-768. doi: 10.1007/s11440-021-01231-8
|
[4] |
WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0
|
[5] |
HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
|
[6] |
DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics - A/Solids, 2001, 20(1): 113-137. doi: 10.1016/S0997-7538(00)01130-X
|
[7] |
BANDINI V, COOP M R. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
|
[8] |
LI G, LIU Y J, DANO C, et al. Grading-dependent behavior of granular materials: from discrete to continuous modeling[J]. Journal of Engineering Mechanics, 2015, 141(6): 276-285.
|
[9] |
兰鹏, 李海潮, 叶新宇, 等. PINNs算法及其在岩土工程中的应用研究[J]. 岩土工程学报, 2021, 43(3): 586-592. doi: 10.11779/CJGE202103023
LAN Peng, LI Haichao, YE Xinyu, et al. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. (in Chinese) doi: 10.11779/CJGE202103023
|
[10] |
HOLLAND J. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: University of Michigan Press, 1975.
|
[11] |
WANG L, TANG D B. An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem[J]. Expert Systems With Applications, 2011, 38(6): 7243-7250. doi: 10.1016/j.eswa.2010.12.027
|
[12] |
王煦法, 张显俊, 曹先彬, 等. 一种基于免疫原理的遗传算法[J]. 小型微型计算机系统, 1999, 20(2): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX902.007.htm
WANG Xufa, ZHANG Xianjun, CAO Xianbin, et al. An improved genetic algorithm based on immune principle[J]. Mini-Micro Systems, 1999, 20(2): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX902.007.htm
|
[13] |
HAN H, DING Y S, HAO K R, et al. An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking[J]. Computers & Mathematics With Applications, 2011, 62(7): 2685-2695.
|
[14] |
YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated clays[J]. Science in China Series E: Technological Sciences, 2008, 51(2): 179-191. doi: 10.1007/s11431-008-0011-2
|
[15] |
YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
|
[16] |
YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
|
[17] |
YAO Y P, WANG N B, CHEN D. UH model for granular soils considering low confining pressure[J]. Acta Geotechnica, 2021, 16(6): 1815-1827. doi: 10.1007/s11440-020-01084-7
|
[18] |
姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002
YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
|
[19] |
DE BONO J P, MCDOWELL G R. Micro mechanics of the critical state line at high stresses[J]. Computers and Geotechnics, 2018, 98: 181-188. doi: 10.1016/j.compgeo.2018.02.016
|
[20] |
RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. doi: 10.1139/t04-065
|
[21] |
KIKUMOTO M, WOOD D M, RUSSELL A. Particle crushing and deformation behaviour[J]. Soils and Foundations, 2010, 50(4): 547-563.
|
[22] |
VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
|
[23] |
YAMAMURO J A, LADE P V. Drained sand behavior in axisymmetric tests at high pressures[J]. Journal of Geotechnical Engineering, 1996, 122(2): 109-119.
|
[24] |
史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. doi: 10.11779/CJGE202202014
SHI Jinquan, XIAO Yang, LIU Hanlong, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) doi: 10.11779/CJGE202202014
|
[25] |
XIAO Y, LIU H L, DING X M, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031.
|
[26] |
WANG L, MENG M Q, LIU H L, et al. Numerical investigation on the effect of grain crushing process on critical state on rockfill material[M]//Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021: 295-302.
|
[27] |
HU W, YIN Z Y, SCARINGI G, et al. Relating fragmentation, plastic work and critical state in crushable rock clasts[J]. Engineering Geology, 2018, 246: 326-336.
|
[1] | Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641 |
[2] | WANG Shuhong, DONG Furui. Stability analysis of surrounding rock of mountain tunnels based on deformation prediction and parameter inversion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1024-1035. DOI: 10.11779/CJGE20220288 |
[3] | RUAN Yong-fen, YU Dong-xiao, WU Long, TAN Gui-ping, LI Fei-peng, CHEN Bo. DE-GWO algorithm to optimize SVM inversion mechanical parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 166-170. DOI: 10.11779/CJGE2021S1030 |
[4] | CHENG Fei, LIU Jiang-ping, MAO Mao, WANG Jing, SONG Xian-hai. Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 147-154. DOI: 10.11779/CJGE201601016 |
[5] | LIU Bin, WANG Chuan-wu, YANG Wei-min, LI Shu-cai, NIE Li-chao, SONG Jie. 3D resistivity inversion using improved parallel genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009 |
[6] | JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019 |
[7] | LIU Kai-yun, FANG Yu, LIU Bao-guo. Elasto-plastic parameter inversion of tunnel engineering based on genetic-Gaussian process regression algorithm[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 883. |
[8] | LIU Hongshuai. Calibrating method for seismic response spectra based on niche genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 975-979. |
[9] | YAO Leihua. Parameters identification of groundwater flow model with genetic algorithm and Gauss-Newton Method[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 885-890. |
[10] | LIU Yingxi, WU Lijun, HAN Guocheng. Optimization inversion for identifying ground parameters of slope[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 315-318. |