• 全国中文核心期刊
  • 中国科技核心期刊
  • 美国工程索引(EI)收录期刊
  • Scopus数据库收录期刊
XIONG Haibin, YU Qian, ZHANG Sheng, TONG Chenxi, LAN Peng, LIU Guangqing. UH model and parameter inversion for crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 134-143. DOI: 10.11779/CJGE20211299
Citation: XIONG Haibin, YU Qian, ZHANG Sheng, TONG Chenxi, LAN Peng, LIU Guangqing. UH model and parameter inversion for crushable sands[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(1): 134-143. DOI: 10.11779/CJGE20211299

UH model and parameter inversion for crushable sands

More Information
  • Received Date: December 06, 2021
  • Available Online: February 03, 2023
  • Published Date: December 06, 2021
  • The effect of particle breakage on the critical state of granular soils is of great significance. The existing studies have shown that the critical state line (CSL) of granular soils in the e-lnp space shifts downward as a result of particle breakage. However, it remains a big challenge for capturing the degree of particle breakage and the movement of CSL. In this study, the UH model for sands is modified by introducing the particle breakage parameter eB and embedded in the real number encoding immune genetic algorithm (RIGA) to establish the RIGA-MUH model, which proposes a new method that can obtain the CSLs for the sands with varying particle-size distributions. The model is optimized and improved to obtain more accurate critical state parameters by adjusting the weight ratio in the error function under the critical state of granular soils. The stability, rationality and accuracy of the model are verified through the results of conventional drainage triaxial compression tests on the Toyoura sand and Cambria sand. The results show that the proposed model can be used to obtain the CSLs with high accuracy under a certain amount of particle breakage, which provides new insight into the constitutive modeling of crushable sands.
  • [1]
    张家铭, 蒋国盛, 汪稔. 颗粒破碎及剪胀对钙质砂抗剪强度影响研究[J]. 岩土力学, 2009, 30(7): 2043-2048. https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907035.htm

    ZHANG Jiaming, JIANG Guosheng, WANG Ren. Research on influences of particle breakage and dilatancy on shear strength of calcareous sands[J]. Rock and Soil Mechanics, 2009, 30(7): 2043-2048. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-YTLX200907035.htm
    [2]
    TONG C X, BURTON G J, ZHANG S, et al. Particle breakage of uniformly graded carbonate sands in dry/wet condition subjected to compression/shear tests[J]. Acta Geotechnica, 2020, 15(9): 2379-2394. doi: 10.1007/s11440-020-00931-x
    [3]
    TONG C X, ZHAI M Y, LI H C, et al. Particle breakage of granular soils: changing critical state line and constitutive modelling[J]. Acta Geotechnica, 2022, 17(3): 755-768. doi: 10.1007/s11440-021-01231-8
    [4]
    WOOD D M, MAEDA K. Changing grading of soil: effect on critical states[J]. Acta Geotechnica, 2008, 3(1): 3-14. doi: 10.1007/s11440-007-0041-0
    [5]
    HARDIN B O. Crushing of soil particles[J]. Journal of Geotechnical Engineering, 1985, 111(10): 1177-1192. doi: 10.1061/(ASCE)0733-9410(1985)111:10(1177)
    [6]
    DAOUADJI A, HICHER P Y, RAHMA A. An elastoplastic model for granular materials taking into account grain breakage[J]. European Journal of Mechanics - A/Solids, 2001, 20(1): 113-137. doi: 10.1016/S0997-7538(00)01130-X
    [7]
    BANDINI V, COOP M R. The influence of particle breakage on the location of the critical state line of sands[J]. Soils and Foundations, 2011, 51(4): 591-600. doi: 10.3208/sandf.51.591
    [8]
    LI G, LIU Y J, DANO C, et al. Grading-dependent behavior of granular materials: from discrete to continuous modeling[J]. Journal of Engineering Mechanics, 2015, 141(6): 276-285.
    [9]
    兰鹏, 李海潮, 叶新宇, 等. PINNs算法及其在岩土工程中的应用研究[J]. 岩土工程学报, 2021, 43(3): 586-592. doi: 10.11779/CJGE202103023

    LAN Peng, LI Haichao, YE Xinyu, et al. PINNs algorithm and its application in geotechnical engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(3): 586-592. (in Chinese) doi: 10.11779/CJGE202103023
    [10]
    HOLLAND J. Adaptation in Natural and Artificial Systems[M]. Ann Arbor: University of Michigan Press, 1975.
    [11]
    WANG L, TANG D B. An improved adaptive genetic algorithm based on hormone modulation mechanism for job-shop scheduling problem[J]. Expert Systems With Applications, 2011, 38(6): 7243-7250. doi: 10.1016/j.eswa.2010.12.027
    [12]
    王煦法, 张显俊, 曹先彬, 等. 一种基于免疫原理的遗传算法[J]. 小型微型计算机系统, 1999, 20(2): 117-120. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX902.007.htm

    WANG Xufa, ZHANG Xianjun, CAO Xianbin, et al. An improved genetic algorithm based on immune principle[J]. Mini-Micro Systems, 1999, 20(2): 117-120. (in Chinese) https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX902.007.htm
    [13]
    HAN H, DING Y S, HAO K R, et al. An evolutionary particle filter with the immune genetic algorithm for intelligent video target tracking[J]. Computers & Mathematics With Applications, 2011, 62(7): 2685-2695.
    [14]
    YAO Y P, HOU W, ZHOU A N. Constitutive model for overconsolidated clays[J]. Science in China Series E: Technological Sciences, 2008, 51(2): 179-191. doi: 10.1007/s11431-008-0011-2
    [15]
    YAO Y P, HOU W, ZHOU A N. UH model: three- dimensional unified hardening model for overconsolidated clays[J]. Géotechnique, 2009, 59(5): 451-469. doi: 10.1680/geot.2007.00029
    [16]
    YAO Y P, LIU L, LUO T, et al. Unified hardening (UH) model for clays and sands[J]. Computers and Geotechnics, 2019, 110: 326-343. doi: 10.1016/j.compgeo.2019.02.024
    [17]
    YAO Y P, WANG N B, CHEN D. UH model for granular soils considering low confining pressure[J]. Acta Geotechnica, 2021, 16(6): 1815-1827. doi: 10.1007/s11440-020-01084-7
    [18]
    姚仰平, 刘林, 罗汀. 砂土的UH模型[J]. 岩土工程学报, 2016, 38(12): 2147-2153. doi: 10.11779/CJGE201612002

    YAO Yangping, LIU Lin, LUO Ting. UH model for sands[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12): 2147-2153. (in Chinese) doi: 10.11779/CJGE201612002
    [19]
    DE BONO J P, MCDOWELL G R. Micro mechanics of the critical state line at high stresses[J]. Computers and Geotechnics, 2018, 98: 181-188. doi: 10.1016/j.compgeo.2018.02.016
    [20]
    RUSSELL A R, KHALILI N. A bounding surface plasticity model for sands exhibiting particle crushing[J]. Canadian Geotechnical Journal, 2004, 41(6): 1179-1192. doi: 10.1139/t04-065
    [21]
    KIKUMOTO M, WOOD D M, RUSSELL A. Particle crushing and deformation behaviour[J]. Soils and Foundations, 2010, 50(4): 547-563.
    [22]
    VERDUGO R, ISHIHARA K. The steady state of sandy soils[J]. Soils and Foundations, 1996, 36(2): 81-91.
    [23]
    YAMAMURO J A, LADE P V. Drained sand behavior in axisymmetric tests at high pressures[J]. Journal of Geotechnical Engineering, 1996, 122(2): 109-119.
    [24]
    史金权, 肖杨, 刘汉龙, 等. 钙质砂小应变初始剪切模量试验研究[J]. 岩土工程学报, 2022, 44(2): 324-333. doi: 10.11779/CJGE202202014

    SHI Jinquan, XIAO Yang, LIU Hanlong, et al. Experimental study on small-strain shear modulus of calcareous sand[J]. Chinese Journal of Geotechnical Engineering, 2022, 44(2): 324-333. (in Chinese) doi: 10.11779/CJGE202202014
    [25]
    XIAO Y, LIU H L, DING X M, et al. Influence of particle breakage on critical state line of rockfill material[J]. International Journal of Geomechanics, 2016, 16(1): 04015031.
    [26]
    WANG L, MENG M Q, LIU H L, et al. Numerical investigation on the effect of grain crushing process on critical state on rockfill material[M]//Challenges and Innovations in Geomechanics. Cham: Springer International Publishing, 2021: 295-302.
    [27]
    HU W, YIN Z Y, SCARINGI G, et al. Relating fragmentation, plastic work and critical state in crushable rock clasts[J]. Engineering Geology, 2018, 246: 326-336.
  • Related Articles

    [1]Research on machine learning model for refined inversion of mechanical parameters of surrounding rock considering zonal deterioration[J]. Chinese Journal of Geotechnical Engineering. DOI: 10.11779/CJGE20240641
    [2]WANG Shuhong, DONG Furui. Stability analysis of surrounding rock of mountain tunnels based on deformation prediction and parameter inversion[J]. Chinese Journal of Geotechnical Engineering, 2023, 45(5): 1024-1035. DOI: 10.11779/CJGE20220288
    [3]RUAN Yong-fen, YU Dong-xiao, WU Long, TAN Gui-ping, LI Fei-peng, CHEN Bo. DE-GWO algorithm to optimize SVM inversion mechanical parameters of soft soil[J]. Chinese Journal of Geotechnical Engineering, 2021, 43(S1): 166-170. DOI: 10.11779/CJGE2021S1030
    [4]CHENG Fei, LIU Jiang-ping, MAO Mao, WANG Jing, SONG Xian-hai. Self-adapting control parameters-based differential evolution algorithm for inversion of Rayleigh wave dispersion curves[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(1): 147-154. DOI: 10.11779/CJGE201601016
    [5]LIU Bin, WANG Chuan-wu, YANG Wei-min, LI Shu-cai, NIE Li-chao, SONG Jie. 3D resistivity inversion using improved parallel genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(7): 1252-1261. DOI: 10.11779/CJGE201407009
    [6]JIANG Ming-jing, HE Jie, SHEN Zhi-fu. Preliminary investigation on parameter inversion for three-dimensional distinct element modeling of methane hydrate[J]. Chinese Journal of Geotechnical Engineering, 2014, 36(4): 736-744. DOI: 10.11779/CJGE201404019
    [7]LIU Kai-yun, FANG Yu, LIU Bao-guo. Elasto-plastic parameter inversion of tunnel engineering based on genetic-Gaussian process regression algorithm[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(6): 883.
    [8]LIU Hongshuai. Calibrating method for seismic response spectra based on niche genetic algorithm[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(6): 975-979.
    [9]YAO Leihua. Parameters identification of groundwater flow model with genetic algorithm and Gauss-Newton Method[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(8): 885-890.
    [10]LIU Yingxi, WU Lijun, HAN Guocheng. Optimization inversion for identifying ground parameters of slope[J]. Chinese Journal of Geotechnical Engineering, 2001, 23(3): 315-318.
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article views (293) PDF downloads (66) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return